On Using High-Definition Body Worn Cameras for Face Recognition from a Distance

  • Wasseem Al-Obaydy
  • Harin Sellahewa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6583)

Abstract

Recognition of human faces from a distance is highly desirable for law-enforcement. This paper evaluates the use of low-cost, high-definition (HD) body worn video cameras for face recognition from a distance. A comparison of HD vs. Standard-definition (SD) video for face recognition from a distance is presented. HD and SD videos of 20 subjects were acquired in different conditions and at varying distances. The evaluation uses three benchmark algorithms: Eigenfaces, Fisherfaces and Wavelet Transforms. The study indicates when gallery and probe images consist of faces captured from a distance, HD video result in better recognition accuracy, compared to SD video. This scenario resembles real-life conditions of video surveillance and law-enforcement activities. However, at a close range, face data obtained from SD video result in similar, if not better recognition accuracy than using HD face data of the same range.

Keywords

HD video Face Recognition Face Database Surveillance Eigenfaces Fisherfaces Wavelet Transforms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailly-Bailliére, E., Bagnio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariéthoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Ruiz, B., Thiran, J.: The BANCA Database Evaluation Protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  3. 3.
    Browne, S.E.: High Definition Postproduction: Editing and Delivering HD Video. Focal Press (December 2006)Google Scholar
  4. 4.
    Chapman, N., Chapman, J.: Digital Multimedia, 3rd edn. John Wiley & Sons, Ltd., Chichester (2009)Google Scholar
  5. 5.
    Chien, J.T., Wu, C.C.: Discriminant Waveletfaces and Nearest Feature Classifiers for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1644–1649 (2002)CrossRefGoogle Scholar
  6. 6.
    Ekenel, H.K., Sankur, B.: Multiresolution face recognition. Image and Vision Computing 23(5), 469–477 (2005)CrossRefGoogle Scholar
  7. 7.
    Gross, R., Brajovi, V.: An Image Preprocessing Algorithm for Illumination Invariant Face Recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 11–18. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Kung, S.Y., Mak, M.W., Lin, S.H.: Biometric Authentication:A Machine Learning Approach. Prentice Hall, New Jersey (2005)Google Scholar
  9. 9.
    Park, U.: Face Recognition: face in video, age invariance, and facial marks. Ph.D. thesis, Michigan State University, USA (2009)Google Scholar
  10. 10.
    Phillips, P.J., Flynn, P.J., Beveridge, J.R., Scruggs, W.T., O’toole, A.J., Bolme, D.S., Bowyer, K.W., Draper, B.A., Givens, G.H., Lui, Y.M., Sahibzada, H., Scallan, J.A., Weimer, S.: Overview of the multiple biometrics grand challenge. In: Proc. International Conference on Biometrics, pp. 705–714 (June 2009)Google Scholar
  11. 11.
    Sellahewa, H., Jassim, S.: Wavelet-based face verification for constrained platforms. In: Biometric Technology for Human Identification II. Proc. SPIE, vol. 5779, pp. 173–183 (March 2005)Google Scholar
  12. 12.
    Sellahewa, H., Jassim, S.: Image quality-based adaptive face recognition. IEEE Transactions on Intrumentation & Measurements 59, 805–813 (2010)CrossRefGoogle Scholar
  13. 13.
    Shan, S., Gao, W., Cao, B., Zhao, D.: Illumination Normalization for Robust Face Recognition Against Varying Lighting Conditions. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 157–164 (2003)Google Scholar
  14. 14.
    Thomas, D., Boyer, K.W., Flynn, P.J.: Strategies for improving face recognition from video. In: Ratha, N.K., Govindaraju, V. (eds.) Advances in Biometrics - Sensors, Algorithms and Systems, ch. 18, pp. 339–361. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wasseem Al-Obaydy
    • 1
  • Harin Sellahewa
    • 1
  1. 1.Department of Applied ComputingUniversity of BuckinghamBuckinghamUK

Personalised recommendations