Skip to main content

On-Chip Ego-Motion Estimation Based on Optical Flow

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6578))

Included in the following conference series:

Abstract

A novel system on chip (SoC) is presented for estimating the ego-motion of the vehicle based on optical flow cues. The main novelty of the system consists in its implementation as an on-chip hybrid hardware/software system. The improvements in the FPGA technology allows to have programmable logic resources accompanied by processors on the same chip. In this way, inherently sequential tasks are implemented as software modules executed in embedded general purpose processors while hardware friendly modules are implemented in specific purpose co-processing engines. The proposed SoC is capable of estimating ego-motion by using the PowerPC available in the FPGA XC4VFX60-10 of Xilinx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seven solution s.l., sevensols, seven Solutions is a technology-based company specialized in design of processing systems (2006)

    Google Scholar 

  2. Xilinx Inc., Xilinx Datasheet Virtex4 Family Features (2007)

    Google Scholar 

  3. Bruss, A.R., Horn, B.K.P.: Passive navigation. Computer Vision, Graphics, and Image Processing 21(1), 3–20 (1983)

    Article  Google Scholar 

  4. Díaz, J., Ros, E., Agís, R., Bernier, J.L.: Superpipelined high-performance optical flow computation architecture. CVIU (122), 262–273 (2008)

    Google Scholar 

  5. Gautama, T., Van Hulle, M.: A phase-based approach to the estimation of the optical flow field using spatial filtering. IEEE Trans. on Neural Networks 13(5), 1127–1136 (2002)

    Article  Google Scholar 

  6. Gideon, P., Stein, O.M., Shashua, A.: A robust method for computing vehicle ego-motion. In: Intelligent Vehicles Symposium, pp. 362–368 (2000)

    Google Scholar 

  7. Heeger, D.J., Jepson, A.D.: Subspace methods for recovering rigid motion i: algorithm and implementation. Int. J. Comput. Vision 7(2), 95–117 (1992)

    Article  Google Scholar 

  8. Koichiro Yamaguchi, T.K., Ninomiya, Y.: Vehicle ego-motion estimation and moving object detection using a monocular camera. In: 18th International Conference on Pattern Recognition, ICPR 2006, pp. 610–613 (2006)

    Google Scholar 

  9. Longuet-Higgins, H.C., Prazdny, K.: The interpretation of a moving retinal image. Royal Society of London Proceedings Series B 208, 385–397 (1980)

    Article  Google Scholar 

  10. Martn, J.L., Zuloaga, A., Cuadrado, C., Lzaro, J., Bidarte, U.: Hardware implementation of optical flow constraint equation using fpgas. CVIU 98(3) (2005)

    Google Scholar 

  11. Pauwels, K., Hulle, M.M.V.: Optimal instantaneous rigid motion estimation insensitive to local minima. CVIU 104(1), 77–86 (2006)

    Google Scholar 

  12. Pudas, M., Viollet, S., Ruffier, F., Kruusing, A., Amic, S., Leppvuori, S., Franceschini, N.: A miniature bio-inspired optic flow sensor based on low temperature co-fired ceramics (ltcc) technology. Sensors and Actuators A: Physical (2007)

    Google Scholar 

  13. Raudies, F., Neumann, H.: An efficient linear method for the estimation of ego-motion from optical flow. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 11–20. Springer, Heidelberg (2009)

    Google Scholar 

  14. Sabatini, S.P., Gastaldi, G., Solari, F., Pauwels, K., Hulle, M.V., Daz, J., Ros, E., Pugeault, N., Krger, N.: Compact and accurate early vision processing in the harmonic space. In: In The Harmonic Space. VISAPP (2007)

    Google Scholar 

  15. Török, L., Zarándy, A.: Analog-vlsi, array-processor-based, bayesian, multi-scale optical flow estimation: Research articles. Int. J. Circuit Theory Appl., 49–75 (2006)

    Google Scholar 

  16. Vanegas, M., Tomasi, M., Díaz, J., Ros, E.: Multi-port abstraction layer for fpga intensive memory exploitation applications. Journal Sys. Arch. (56), 442–451 (2010)

    Google Scholar 

  17. Zhang, T., Tomasi, C.: Fast, robust, and consistent camera motion estimation. In: IEEE Comp. Society Conf. on Comp. Vision and Pattern Recog., vol. 1 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vanegas, M., Rubio, L., Tomasi, M., Diaz, J., Ros, E. (2011). On-Chip Ego-Motion Estimation Based on Optical Flow. In: Koch, A., Krishnamurthy, R., McAllister, J., Woods, R., El-Ghazawi, T. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2011. Lecture Notes in Computer Science, vol 6578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19475-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19475-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19474-0

  • Online ISBN: 978-3-642-19475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics