Scansorial Landing and Perching

  • Alexis Lussier Desbiens
  • Alan T. Asbeck
  • Mark R. Cutkosky
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 70)


We describe an approach whereby small unmanned aircraft can land and perch on outdoor walls. Our prototype uses an ultrasonic sensor to initiate a pitch-up maneuver as it flies toward a wall. As it begins to stall, it contacts the wall with compliant “feet” equipped with rows of miniature spines that engage asperities on the surface. A nonlinear hierarchical suspension absorbs the kinetic energy and controls contact forces in the normal and tangential directions to keep spines engaged during the landing process. Future work will include powered take-offs and maneuvering in contact with the wall.


Pitch Angle Ultrasonic Sensor Climbing Robot Landing Force Successful Landing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M., Perry, C., Hua, B., Olsen, D., Parcus, J., Pederson, K., Jensen, D.: The Sticky-Pad Plane and other Innovative Concepts for Perching UAVs. In: 47 th AIAA Aerospace Sciences Meeting (2009)Google Scholar
  2. Asbeck, A., Kim, S., Cutkosky, M., Provancher, W.R., Lanzetta, M.: Scaling hard vertical surfaces with compliant microspine arrays. International Journal of Robotics Research 25(12), 14 (2006)Google Scholar
  3. Byrnes, G., Lim, N.T.L., Spence, A.J.: Take-off and landing kinetics of a free-ranging gliding mammal, the malayan colugo (galeopterus variegatus). Proceedings of the Royal Society B: Biological Sciences 275(1638), 1007–1013 (2008)CrossRefGoogle Scholar
  4. Caple, G., Balda, R.P., Willis, W.R.: The physics of leaping animals and the evolution of preflight. The American Naturalist 121, 455–467 (1983)CrossRefGoogle Scholar
  5. Cham, J.G., Bailey, S.A., Clark, J.E., Full, R.J., Cutkosky, M.R.: Fast and robust: Hexapedal robots via shape deposition manufacturing. IJRR 21(10), 869–882 (2002)Google Scholar
  6. Cory, R., Tedrake, R.: Experiments in fixed-wing uav perching. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2008)Google Scholar
  7. Frank, A., McGrew, J.S., Valenti, M., Levine, D., How, J.P.: Hover, transition, and level flight control design for a single-propeller indoor airplane. In: AIAA Guidance, Navigation and Control Conference (2007)Google Scholar
  8. Great Planes, Electrifly flatana (2009),
  9. Green, W., Oh, P.: Autonomous hovering of a fixed-wing micro air vehicle. IEEE International Conference of Robotics and Automation (2008)Google Scholar
  10. Hoburg, W., Tedrake, R.: System identification of post stall aerodynamics for uav perching. In: Proceedings of the AIAA Infotech@Aerospace Conference (2009)Google Scholar
  11. Howell, L.: Compliant mechanisms. Wiley-Interscience, Hoboken (2001)Google Scholar
  12. Jusufi, A., Goldman, D.I., Revzen, S., Full, R.J.: Active tails enhance arboreal acrobatics in geckos. Proceedings of the National Academy of Sciences 105(11), 4215–4219 (2008)CrossRefGoogle Scholar
  13. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., Cutkosky, M.R.: Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics 24(1), 65–74 (2008)CrossRefGoogle Scholar
  14. Lukens, J., Reich, G., Sanders, B.: Wing Mechanization Design and Analysis for a Perching Micro Air Vehicle. In: 49th Structures, Structural Dynamics, and Materials Conference (2008)Google Scholar
  15. Lussier Desbiens, A., Cutkosky, M.: Landing and Perching on Vertical Surfaces with Microspines for Small Unmanned Air Vehicles. In: 2nd International Symposium on Unmanned Aerial Vehicles (2009)Google Scholar
  16. Mitiguy, P.C., Banerjee, A.K.: Efficient simulation of motions involving coulomb friction. Journal of Guidance, Control and Dynamics 22(1) (1999)Google Scholar
  17. Moore, J., Tedrake, R.: Powerline perching with a fixed-wing uav. In: Proceedings of the AIAA Infotech@Aerospace Conference (2009)Google Scholar
  18. Paparazzi, Paparazzi, the free autopilot (2008),
  19. Paskins, K.E., Bowyer, A., Megill, W.M., Scheibe, J.S.: Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels glaucomys sabrinus. Journal of Experimental Biology 210(8), 1413–1423 (2007)CrossRefGoogle Scholar
  20. Reich, G., Wojnar, M., Albertani, R.: Aerodynamic Performace of a Notional Perching MAV Design. In: 47 th AIAA Aerospace Sciences Meeting (2009)Google Scholar
  21. Santos, D., Kim, S., Spenko, M., Parness, A., Cutkosky, M.: Directional adhesive structures for controlled climbing on smooth vertical surfaces. In: IEEE ICRA, Rome, Italy (2007)Google Scholar
  22. Roberts, J., Cory, R., Tedrake, R.: On the controllability of fixed-wing perching. In: American Controls Conference (2009)Google Scholar
  23. Spenko, M., Haynes, G., Saunders, J., Cutkosky, M., Rizzi, A., Full, R.: Biologically inspired climbing with a hexapedal robot. Journal of Field Robotics (2008)Google Scholar
  24. Wickenheiser, A.M., Garcia, E.: Optimization of perching maneuvers through vehicle morphing. Journal of Guidance 31(4), 815–823 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexis Lussier Desbiens
    • 1
  • Alan T. Asbeck
    • 1
  • Mark R. Cutkosky
    • 1
  1. 1.Biomimetic and Dextrous Manipulation Laboratory, Center for Design ResearchStanford UniversityStanford

Personalised recommendations