Skip to main content

Polyadenylation in RNA Degradation Processes in Plants

  • Chapter
  • First Online:
Non Coding RNAs in Plants

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Although polyadenylation is best known for stabilizing eukaryotic mRNAs and promoting their translation, the primordial role of polyadenylation is to target RNAs for degradation by 3′→5′ exoribonucleases. This ancient mechanism is conserved among bacteria and eukaryotes, and in plants, polyadenylation-assisted RNA degradation operates in the nucleus, the chloroplast, and the mitochondrion. Polyadenylation-assisted RNA degradation contributes to maturation, turnover, and quality control of a variety of transcripts, the nature of which varies in the different genetic compartments of the plant cell. Moreover, polyadenylation-assisted RNA degradation rapidly removes a large variety of novel transcripts of unknown function that are produced by extensive transcription of extragenic regions, in particular from nuclear and mitochondrial genomes. In this chapter, we review the current knowledge of polyadenylation-assisted RNA degradation in plants, highlighting the different impact of this RNA degradation pathway on the expression of nuclear, plastidial, or mitochondrial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addepalli B, Meeks LR, Forbes KP et al (2004) Novel alternative splicing of mRNAs encoding poly(A) polymerases in Arabidopsis. Biochim Biophys Acta 1679:117–128

    Article  PubMed  CAS  Google Scholar 

  • Allmang C, Petfalski E, Podtelejnikov A et al (1999) The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev 13:2148–2158

    Article  PubMed  CAS  Google Scholar 

  • Anderson JT, Wang X (2009) Nuclear RNA surveillance: no sign of substrates tailing off. Crit Rev Biochem Mol Biol 44:16–24

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky D (2009) Exosome complex and pervasive transcription in eukaryotic genomes. Curr Opin Cell Biol 21:352–358

    Article  PubMed  CAS  Google Scholar 

  • Bickel KS, Morris DR (2006) Silencing the transcriptome’s dark matter: mechanisms for suppressing translation of intergenic transcripts. Mol Cell 22:309–316

    Article  PubMed  CAS  Google Scholar 

  • Bobrowicz AJ, Lightowlers RN, Chrzanowska-Lightowlers Z (2008) Polyadenylation and degradation of mRNA in mammalian mitochondria: a missing link? Biochem Soc Trans 36:517–519

    Article  PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Lange H, Gutierrez R et al (2005) RNR1, a 3′–5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis. Nucleic Acids Res 33:2751–2763

    Article  PubMed  CAS  Google Scholar 

  • Bühler M, Haas W, Gygi SP et al (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129:707–721

    Article  PubMed  CAS  Google Scholar 

  • Bühler M, Spies N, Bartel DP et al (2008) TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 15:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Celesnik H, Deana A, Belasco JG (2007) Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Mol Cell 27:79–90

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Shaw RJ, Wills MA et al (2000) Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 275:33158–33166

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Dutko JA, Mian IS et al (2002) Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′→5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res 30:695–700

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Gregory BD, Reverdatto SV et al (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 13:1340–1353

    Article  CAS  Google Scholar 

  • Condon C (2007) Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 10:271–278

    Article  PubMed  CAS  Google Scholar 

  • Cristodero M, Clayton CE (2007) Trypanosome MTR4 is involved in rRNA processing. Nucleic Acids Res 35:7023–7030

    Article  PubMed  CAS  Google Scholar 

  • de la Sierra-Gallay IL, Zig L, Jamalli A et al (2008) Structural insights into the dual activity of RNase J. Nat Struct Mol Biol 15:206–212

    Article  CAS  Google Scholar 

  • Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451:355–835

    Article  PubMed  CAS  Google Scholar 

  • Drager RG, Higgs DC, Kindle KL et al (1999) 5′ to 3′ exoribonucleolytic activity is a normal component of chloroplast mRNA decay pathways. Plant J 19:521–531

    Article  PubMed  CAS  Google Scholar 

  • Dziembowski A, Lorentzen E, Conti E et al (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22

    Article  PubMed  CAS  Google Scholar 

  • Etheridge RD, Aphasizheva I, Gershon PD et al (2008) 3′ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J 27:1596–1608

    Article  PubMed  CAS  Google Scholar 

  • Etheridge RD, Clemens DM, Gershon PD et al (2009) Identification and characterization of nuclear non-canonical poly(A) polymerases from Trypanosoma brucei. Mol Biochem Parasitol 164:66–73

    Article  PubMed  CAS  Google Scholar 

  • Gagliardi D, Binder S (2007) Expression of the plant mitochondrial genome. In: Logan D (ed) Plant mitochondria. Annual plant reviews, vol 31. Blackwell Publishing, Oxford

    Google Scholar 

  • Gagliardi D, Stepien PP, Temperley RJ et al (2004) Messenger RNA stability in mitochondria: different means to an end. Trends Genet 20:260–267

    Article  PubMed  CAS  Google Scholar 

  • Gregory BD, O’Malley RC, Lister R et al (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866

    Article  PubMed  CAS  Google Scholar 

  • Gy I, Gasciolli V, Lauressergues D et al (2007) Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19:3451–3461

    Article  PubMed  CAS  Google Scholar 

  • Hartung S, Hopfner K (2009) Lessons from structural and biochemical studies on the archaeal exosome. Biochem Soc Trans 37:83–87

    Article  PubMed  CAS  Google Scholar 

  • Holec S, Lange H, Kühn K et al (2006) Relaxed transcription in Arabidopsis mitochondria is counterbalanced by RNA stability control mediated by polyadenylation and polynucleotide phosphorylase. Mol Cell Biol 26:2869–2876

    Article  PubMed  CAS  Google Scholar 

  • Holec S, Lange H, Canaday J et al (2008a) Coping with cryptic and defective transcripts in plant mitochondria. Biochim Biophys Acta 1779:566–573

    Article  PubMed  CAS  Google Scholar 

  • Holec S, Lange H, Dietrich A et al (2008b) Polyadenylation-mediated RNA degradation in plant mitochondria. Methods Enzymol 447:439–461

    Article  PubMed  CAS  Google Scholar 

  • Hooker TS, Lam P, Zheng H et al (2007) A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell 19:904–913

    Article  PubMed  CAS  Google Scholar 

  • Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776

    Article  PubMed  CAS  Google Scholar 

  • Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim F, Rohr J, Jeong W et al (2006) Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 314:1893

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim F, Rymarquis LA, Kim E et al (2010) Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci USA 107:3906–3911

    Article  PubMed  CAS  Google Scholar 

  • Kao C, Read LK (2005) Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol Cell Biol 25:1634–1644

    Article  PubMed  CAS  Google Scholar 

  • Kastenmayer JP, Johnson MA, Green PJ (2001) Analysis of XRN orthologs by complementation of yeast mutants and localization of XRN-GFP fusion proteins. Methods Enzymol 342:269–282

    Article  PubMed  CAS  Google Scholar 

  • Komine Y, Kikis E, Schuster G et al (2002) Evidence for in vivo modulation of chloroplast RNA stability by 3′-UTR homopolymeric tails in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:4085–4090

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Hayes R, Gruissem W (1996) Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J 15:7137–7146

    PubMed  CAS  Google Scholar 

  • Kwak JE, Wickens M (2007) A family of poly(U) polymerases. RNA 13:860–867

    Article  PubMed  CAS  Google Scholar 

  • LaCava J, Houseley J, Saveanu C et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724

    Article  PubMed  CAS  Google Scholar 

  • Lange H, Holec S, Cognat V et al (2008) Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 28:3038–3044

    Article  PubMed  CAS  Google Scholar 

  • Lange H, Sement FM, Canaday J et al (2009) Polyadenylation-assisted RNA degradation processes in plants. Trends Plant Sci 14:497–504

    Article  PubMed  CAS  Google Scholar 

  • Lebreton A, Séraphin B (2008) Exosome-mediated quality control: substrate recruitment and molecular activity. Biochim Biophys Acta 1779:558–565

    Article  PubMed  CAS  Google Scholar 

  • Lebreton A, Tomecki R, Dziembowski A et al (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456:993–996

    Article  PubMed  CAS  Google Scholar 

  • Lehrbach NJ, Armisen J, Lightfoot HL et al (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Z, Yu B et al (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Lin-Chao S, Chiou N, Schuster G (2007) The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. J Biomed Sci 14:523–532

    Article  PubMed  CAS  Google Scholar 

  • Li-Pook-Than J, Bonen L (2006) Multiple physical forms of excised group II intron RNAs in wheat mitochondria. Nucleic Acids Res 34:2782–2790

    Article  PubMed  CAS  Google Scholar 

  • Lisitsky I, Klaff P, Schuster G (1996) Addition of destabilizing poly (A)-rich sequences to endonuclease cleavage sites during the degradation of chloroplast mRNA. Proc Natl Acad Sci USA 93:13398–13403

    Article  PubMed  CAS  Google Scholar 

  • Lisitsky I, Klaff P, Schuster G (1997) Blocking polyadenylation of mRNA in the chloroplast inhibits its degradation. Plant J 12:1173–1178

    Article  CAS  Google Scholar 

  • Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    Article  PubMed  CAS  Google Scholar 

  • Loiselay C, Gumpel NJ, Girard-Bascou J et al (2008) Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 28:5529–5542

    Article  PubMed  CAS  Google Scholar 

  • Lorentzen E, Walter P, Fribourg S et al (2005) The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12:575–581

    Article  PubMed  CAS  Google Scholar 

  • Lung B, Zemann A, Madej MJ et al (2006) Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res 34:3842–3852

    Article  PubMed  CAS  Google Scholar 

  • Marchive C, Yehudai-Resheff S, Germain A et al (2009) Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. Plant Physiol 151:905–924

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Keller W (2007) RNA-specific ribonucleotidyl transferases. RNA 13:1834–1849

    Article  PubMed  CAS  Google Scholar 

  • Marujo PE, Hajnsdorf E, Le Derout J et al (2000) RNase II removes the oligo(A) tails that destabilize the rpsO mRNA of Escherichia coli. RNA 6:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Mathy N, Bénard L, Pellegrini O et al (2007) 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell 129:681–692

    Article  PubMed  CAS  Google Scholar 

  • Mathy N, Hébert A, Mervelet P et al (2010) Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour. Mol Microbiol 75:489–498

    Article  PubMed  CAS  Google Scholar 

  • Matsui A, Ishida J, Morosawa T et al (2010) Arabidopsis tiling array analysis to identify the stress-responsive genes. Methods Mol Biol 639:141–155

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Petfalski E, Shevchenko A et al (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91:457–466

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700

    Article  PubMed  CAS  Google Scholar 

  • Mudd EA, Sullivan S, Gisby MF et al (2008) A 125 kDa RNase E/G-like protein is present in plastids and is essential for chloroplast development and autotrophic growth in Arabidopsis. J Exp Bot 59:2597–2610

    Article  PubMed  CAS  Google Scholar 

  • Mullen TE, Marzluff WF (2008) Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 22:50–65

    Article  PubMed  CAS  Google Scholar 

  • Nagaike T, Suzuki T, Katoh T et al (2005) Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem 280:19721–19727

    Article  PubMed  CAS  Google Scholar 

  • Nakamura R, Takeuchi R, Takata K et al (2008) TRF4 is involved in polyadenylation of snRNAs in Drosophila melanogaster. Mol Cell Biol 28:6620–6631

    Article  PubMed  CAS  Google Scholar 

  • Neil H, Malabat C, d’Aubenton-Carafa Y et al (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Norbury CJ (2010) 3′ Uridylation and the regulation of RNA function in the cytoplasm. Biochem Soc Trans 38:1150–1153

    Article  PubMed  CAS  Google Scholar 

  • Perrin R, Lange H, Grienenberger J et al (2004a) AtmtPNPase is required for multiple aspects of the 18S rRNA metabolism in Arabidopsis thaliana mitochondria. Nucleic Acids Res 32:5174–5182

    Article  PubMed  CAS  Google Scholar 

  • Perrin R, Meyer EH, Zaepfel M et al (2004b) Two exoribonucleases act sequentially to process mature 3′-ends of atp9 mRNAs in Arabidopsis mitochondria. J Biol Chem 279:25440–25446

    Article  PubMed  CAS  Google Scholar 

  • Pfalz J, Bayraktar OA, Prikryl J et al (2009) Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28:2024–2052

    Article  CAS  Google Scholar 

  • Placido A, Gagliardi D, Gallerani R et al (2005) Fate of a larch unedited tRNA precursor expressed in potato mitochondria. J Biol Chem 280:33573–33579

    Article  PubMed  CAS  Google Scholar 

  • Portnoy V, Schuster G (2006) RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 34:5923–5931

    Article  PubMed  CAS  Google Scholar 

  • Preker P, Nielsen J, Kammler S et al (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322:1851–1854

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492

    Article  PubMed  CAS  Google Scholar 

  • Régnier P, Hajnsdorf E (2009) Poly(A)-assisted RNA decay and modulators of RNA stability. Prog Mol Biol Transl Sci 85:137–185

    Article  PubMed  CAS  Google Scholar 

  • Rissland OS, Norbury CJ (2008) The Cid1 poly(U) polymerase. Biochim Biophys Acta 1779:286–294

    Article  PubMed  CAS  Google Scholar 

  • Rissland OS, Norbury CJ (2009) Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 16:616–623

    Article  PubMed  CAS  Google Scholar 

  • Rissland OS, Mikulasova A, Norbury CJ (2007) Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol Cell Biol 27:3612–3624

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer D, Tsanova B, Barbas A et al (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16:56–62

    Article  PubMed  CAS  Google Scholar 

  • Schäfer B (2005) RNA maturation in mitochondria of S. cerevisiae and S. pombe. Gene 354:80–85

    Article  PubMed  CAS  Google Scholar 

  • Schein A, Sheffy-Levin S, Glaser F et al (2008) The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA 14:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Jensen TH (2008) The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 33:501–510

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Leung E, Brown J et al (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37:1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Schuster G, Stern D (2009) RNA polyadenylation and decay in mitochondria and chloroplasts. Prog Mol Biol Transl Sci 85:393–422

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Goodman HM (2004) Uridine addition after microRNA-directed cleavage. Science 306:997

    Article  PubMed  CAS  Google Scholar 

  • Slomovic S, Laufer D, Geiger D et al (2005) Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 25:6427–6435

    Article  PubMed  CAS  Google Scholar 

  • Slomovic S, Laufer D, Geiger D et al (2006) Polyadenylation of ribosomal RNA in human cells. Nucleic Acids Res 34:2966–2975

    Article  PubMed  CAS  Google Scholar 

  • Slomovic S, Portnoy V, Yehudai-Resheff S et al (2008) Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim Biophys Acta 1779:247–255

    Article  PubMed  CAS  Google Scholar 

  • Slomovic S, Fremder E, Staals RHG et al (2010) Addition of poly(A) and poly(A)-rich tails during RNA degradation in the cytoplasm of human cells. Proc Natl Acad Sci USA 107:7407–7412

    Article  PubMed  CAS  Google Scholar 

  • Song M, Kiledjian M (2007) 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 13:2356–2365

    Article  PubMed  CAS  Google Scholar 

  • Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15:173–183

    Article  PubMed  CAS  Google Scholar 

  • Staals RHJ, Bronkhorst AW, Schilders G et al (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29:2358–2367

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155

    Article  PubMed  CAS  Google Scholar 

  • Tomecki R, Dmochowska A, Gewartowski K et al (2004) Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucleic Acids Res 32:6001–6014

    Article  PubMed  CAS  Google Scholar 

  • Tomecki R, Drazkowska K, Dziembowski A (2010a) Mechanisms of RNA degradation by the eukaryotic exosome. Chembiochem 11:938–945

    Article  PubMed  CAS  Google Scholar 

  • Tomecki R, Kristiansen MS, Lykke-Andersen S et al (2010b) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 29:2342–2357

    Article  PubMed  CAS  Google Scholar 

  • Vanacova S, Stefl R (2007) The exosome and RNA quality control in the nucleus. EMBO Rep 8:651–657

    Article  PubMed  CAS  Google Scholar 

  • Vanacova S, Wolf J, Martin G et al (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3:e189

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328

    Article  PubMed  CAS  Google Scholar 

  • Walter M, Kilian J, Kudla J (2002) PNPase activity determines the efficiency of mRNA 3′-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts. EMBO J 21:6905–6914

    Article  PubMed  CAS  Google Scholar 

  • West S, Gromak N, Norbury CJ et al (2006) Adenylation and exosome-mediated degradation of cotranscriptionally cleaved pre-messenger RNA in human cells. Mol Cell 21:437–443

    Article  PubMed  CAS  Google Scholar 

  • Win TZ, Draper S, Read RL et al (2006) Requirement of fission yeast Cid14 in polyadenylation of rRNAs. Mol Cell Biol 26:1710–1721

    Article  PubMed  CAS  Google Scholar 

  • Wyers F, Rougemaille M, Badis G et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–737

    Article  PubMed  CAS  Google Scholar 

  • Xi L, Moscou MJ, Meng Y et al (2009) Transcript-based cloning of RRP46, a regulator of rRNA processing and R gene-independent cell death in barley-powdery mildew interactions. Plant Cell 21:3280–3295

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Zhang F, Zheng Y (2006) The 5′ stem-loop and its role in mRNA stability in maize S cytoplasmic male sterility. Plant J 47:864–872

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Wei W, Gagneur J et al (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Bi L, Zhai J et al (2010) siRNAs compete with miRNAs for methylation by HEN1 in Arabidopsis. Nucleic Acids Res 38:5844–5850

    Article  PubMed  CAS  Google Scholar 

  • Zakrzewska-Placzek M, Souret FF, Sobczyk GJ et al (2010) Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res 38:4487–4502

    Article  PubMed  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK et al (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Murphy C, Sieburth LE (2010) Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes. Proc Natl Acad Sci USA 107:15981–15985

    Article  PubMed  CAS  Google Scholar 

  • Zimmer SL, Fei Z, Stern DB (2008) Genome-based analysis of Chlamydomonas reinhardtii exoribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features. Genetics 179:125–136

    Article  PubMed  CAS  Google Scholar 

  • Zimmer SL, Schein A, Zipor G et al (2009) Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(A)-polymerases and polynucleotide phosphorylase. Plant J 59:88–99

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lange, H., Gagliardi, D. (2011). Polyadenylation in RNA Degradation Processes in Plants. In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_13

Download citation

Publish with us

Policies and ethics