Advertisement

Biomechanics of Hip Arthroplasty

  • Michael M. MorlockEmail author
  • Nick Bishop
  • Gerd Huber
Chapter

Abstract

The biomechanics of the hip joint has been of great interest to researchers and clinicians since the early days of anatomical studies. Julius Wolff addressed the relation between the inner architecture of the bone and the functional loading already in the nineteenth century [31] and Friedrich Pauwels built the foundation for a mechanical approach to understand joint loading 65 years later [24].

Keywords

Large Head Dislocation Rate Prosthesis Component National Joint Replacement Registry Stripe Wear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amlie, E., Hovik, O., Reikeras, O.: Dislocation after total hip arthroplasty with 28 and 32-mm femoral head. J. Orthop. Traumatol. 11, 111–115 (2010)PubMedCrossRefGoogle Scholar
  2. 2.
    Archbold, H.A., Slomczykowski, M., Crone, M., Eckman, K., Jaramaz, B., Beverland, D.E.: The relationship of the orientation of the transverse acetabular ligament and acetabular labrum to the suggested safe zones of cup positioning in total hip arthroplasty. Hip Int. 18, 1–6 (2008)PubMedGoogle Scholar
  3. 3.
    Australian Orthopaedic Association: National Joint Replacement Registry Annual Report (2010)Google Scholar
  4. 4.
    Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., Duda, G.N.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34, 859–871 (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    Bergmann, G., Graichen, F., Rohlmann, A., Bender, A., Heinlein, B., Duda, G.N., Heller, M.O., Morlock, M.M.: Realistic loads for testing hip implants. Biomed. Mater. Eng. 20, 65–75 (2010)PubMedGoogle Scholar
  6. 6.
    Berry, D.J., von Knoch, M., Schleck, C.D., Harmsen, W.S.: Effect of femoral head diameter and operative approach on risk of dislocation after primary total hip arthroplasty. J. Bone Joint Surg. Am. 87, 2456–2463 (2005)PubMedCrossRefGoogle Scholar
  7. 7.
    Bishop, N.E., Burton, A., Maheson, M., Morlock, M.M.: Biomechanics of short hip ­endoprostheses – the risk of bone failure increases with decreasing implant size. Clin. Biomech. (Bristol. Avon.) 25, 666–674 (2010)CrossRefGoogle Scholar
  8. 8.
    Bishop, N.E., Waldow, F., Morlock, M.M.: Friction moments of large metal-on-metal hip joint bearings and other modern designs. Med. Eng. Phys. 30, 1057–1064 (2008)PubMedCrossRefGoogle Scholar
  9. 9.
    De, H.R., Pattyn, C., Gill, H.S., Murray, D.W., Campbell, P.A., De, S.K.: Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J. Bone Joint Surg. Br. 90, 1291–1297 (2008)Google Scholar
  10. 10.
    Fottner, A., Utzschneider, S., Mazoochian, F., von Schulze, P.C., Jansson, V.: Cementing techniques in hip arthroplasty: an overview. Z. Orthop. Unfall. 148, 168–173 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    Garbuz, D.S., Tanzer, M., Greidanus, N.V., Masri, B.A., Duncan, C.P.: The John Charnley Award: metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin. Orthop. Relat. Res. 468, 318–325 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    Griffin, W.L., Nanson, C.J., Springer, B.D., Davies, M.A., Fehring, T.K.: Reduced articular surface of one-piece cups: a cause of runaway wear and early failure. Clin. Orthop. Relat. Res. 468, 2328–2332 (2010)PubMedCrossRefGoogle Scholar
  13. 13.
    Hay, J.: The Biomechanics of Sports Technique. Prentice-Hall, Englewood Cliffs (1978)Google Scholar
  14. 14.
    Johnston, R., Smidt, G.: Hip motion measurements for selected activities of daily living. Clin. Orthop. Relat. Res. 72, 205–215 (1970)PubMedGoogle Scholar
  15. 15.
    Kärrholm, J., Garellick, G., Herberts, P., Rogmarck, C.: Swedish Hip Arthroplasty Register 2008. Department of Orthopaedics. Sahlgrenska University Hospital, Göteborg (2009)Google Scholar
  16. 16.
    Kluess, D., Zietz, C., Lindner, T., Mittelmeier, W., Schmitz, K.P., Bader, R.: Limited range of motion of hip resurfacing arthroplasty due to unfavorable ratio of prosthetic head size and femoral neck diameter. Acta Orthop. 79, 748–754 (2008)PubMedCrossRefGoogle Scholar
  17. 17.
    Long, W.T., Dastane, M., Harris, M.J., Wan, Z., Dorr, L.D.: Failure of the Durom Metasul acetabular component. Clin. Orthop. Relat. Res. 468, 400–405 (2010)PubMedCrossRefGoogle Scholar
  18. 18.
    Morlock, M.M., Bishop, N., Zustin, J., Hahn, M., Ruther, W., Amling, M.: Modes of implant failure after hip resurfacing: morphological and wear analysis of 267 retrieval specimens. J. Bone Joint Surg. Am. 90(Suppl 3), 89–95 (2008)PubMedCrossRefGoogle Scholar
  19. 19.
    Muller, M., Tohtz, S., Springer, I., Dewey, M., Perka, C.: Randomized controlled trial of abductor muscle damage in relation to the surgical approach for primary total hip replacement: minimally invasive anterolateral versus modified direct lateral approach. Arch. Orthop. Trauma Surg. 131(2), 179–189 (2011)PubMedCrossRefGoogle Scholar
  20. 20.
    Nassutt, R., Wimmer, M.A., Schneider, E., Morlock, M.M.: The influence of resting periods on friction in the artificial hip. Clin. Orthop. Relat. Res. 407, 127–138 (2003)PubMedCrossRefGoogle Scholar
  21. 21.
    National Joint Registry for England and Wales: 7th Annual Report 2009. Hemel Hempstead, U.K. (2010)Google Scholar
  22. 22.
    Oehy, J., Bider, K.: Design parameter to improve range of motion (ROM) in total hip arthroplasty. In: Lazennec, J.Y., Dietrich, M. (eds.) Bioceramics in Joint Arthroplasty, pp. 149–156. Steinkopf, Darmstadt (2004)CrossRefGoogle Scholar
  23. 23.
    Padgett, D.E., Lipman, J., Robie, B., Nestor, B.J.: Influence of total hip design on dislocation: a computer model and clinical analysis. Clin. Orthop. Relat. Res. 447, 48–52 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Pauwels, F.: Der Schenkelhalsbruch – ein mechanisches Problem. Ferdinand Enke, Stuttgart (1935)Google Scholar
  25. 25.
    Peters, C.L., McPherson, E., Jackson, J.D., Erickson, J.A.: Reduction in early dislocation rate with large-diameter femoral heads in primary total hip arthroplasty. J. Arthroplasty 22, 140–144 (2007)PubMedCrossRefGoogle Scholar
  26. 26.
    Pospischill, M., Kranzl, A., Attwenger, B., Knahr, K.: Minimally invasive compared with traditional transgluteal approach for total hip arthroplasty: a comparative gait analysis. J. Bone Joint Surg. Am. 92, 328–337 (2010)PubMedCrossRefGoogle Scholar
  27. 27.
    Sariali, E., Lazennec, J.Y., Khiami, F., Catonne, Y.: Mathematical evaluation of jumping distance in total hip arthroplasty: influence of abduction angle, femoral head offset, and head diameter. Acta Orthop. 80, 277–282 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    Sariali, E., Stewart, T., Jin, Z., Fisher, J.: In vitro investigation of friction under edge-loading conditions for ceramic-on-ceramic total hip prosthesis. J. Orthop. Res. 28, 979–985 (2010)PubMedGoogle Scholar
  29. 29.
    Spears, I.R., Pfleiderer, M., Schneider, E., Hille, E., Bergmann, G., Morlock, M.M.: Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth. J. Biomech. 33, 1471–1477 (2000)PubMedCrossRefGoogle Scholar
  30. 30.
    Weiss, C., Gdaniec, P., Hoffmann, N.P., Hothan, A., Huber, G., Morlock, M.M.: Squeak in hip endoprosthesis systems: an experimental study and a numerical technique to analyze design variants. Med. Eng. Phys. 32, 604–609 (2010)PubMedCrossRefGoogle Scholar
  31. 31.
    Wolff, J.: Über die innere Architektur der Knochen und ihre Bedeutung für die Frage von Knochenwachsthum. Virchows Arch. A Pathol. Anat. Histopathol. 50, 389–450 (1870)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Biomechanics SectionTUHH Hamburg University of TechnologyHamburgGermany

Personalised recommendations