Osteolysis and Aseptic Loosening: Cellular Events Near the Implant

  • Gema Vallés
  • Eduardo García-Cimbrelo
  • Nuria VilaboaEmail author


The unavoidable degradation of prosthetic materials results in a continuous release and accumulation of wear debris particles that cause a cellular-mediated inflammatory response. The end point of this process is a localized, peri-implant bone loss, which often culminates in aseptic loosening, failure of the implant and the need for revision surgery. Further efforts are needed to develop materials with improved tribological properties and to elucidate the biological mechanisms involved in wear particle-induced osteolysis. Understanding of this pathology at the cellular level could lead to the development of effective strategies and therapeutic targets for the prevention and treatment of this disease. This chapter summarizes current advances in our understanding of the etiology of periprosthetic osteolysis, focusing on basic biological research concerning those cellular effects of wear debris that govern the progression of osteoarticular prosthesis failure.


Aseptic Loosening Wear Particle UHMWPE Particle Induce Bone Resorption Periprosthetic Bone Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1.  1.
    Learmonth, I.D., Young, C., Rorabeck, C.: The operation of the century: total hip replacement. Lancet 370, 1508–1519 (2007). doi: 10.1016/S0140-6736(07)60457-7 PubMedCrossRefGoogle Scholar
  2.  2.
    Passuti, N., Philippeau, J.M., Gouin, F.: Friction couples in total hip replacement. Orthop. Traumatol. Surg. Res. 95, S27–S34 (2009). doi: 10.1016/j.otsr.2009.04.003 PubMedCrossRefGoogle Scholar
  3.  3.
    Sundfeldt, M., Carlsson, L.V., Johansson, C.B., Thomsen, P., Gretzer, C.: Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 77, 177–197 (2006). doi: 10.1080/17453670610045902 PubMedCrossRefGoogle Scholar
  4.  4.
    Catelas, I., Jacobs, J.J.: Biologic activity of wear particles. Instr. Course Lect. 59, 3–16 (2010)PubMedGoogle Scholar
  5.  5.
    Lübbeke, A., Katz, J.N., Perneger, T.V., Hoffmeyer, P.: Primary and revision hip arthroplasty: 5-year outcomes and influence of age and comorbidity. J. Rheumatol. 34, 394–400 (2007)PubMedGoogle Scholar
  6.  6.
    Abu-Amer, Y., Darwech, I., Clohisy, J.C.: Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res. Ther. 9(Suppl 1), S6 (2007). doi:doi: 10.1186/ar2170PubMedCrossRefGoogle Scholar
  7.  7.
    Hallab, N.J., Jacobs, J.J.: Biologic effects of implant debris. Bull NYU Hosp. Jt. Dis. 67, 182–188 (2009)PubMedGoogle Scholar
  8.  8.
    Schmalzried, T.P., Huk, O.L.: Patient factors and wear in total hip arthroplasty. Clin. Orthop. Relat. Res. 418, 94–97 (2004)PubMedCrossRefGoogle Scholar
  9.  9.
    Tuan, R.S., Lee, F.Y.I., Konttinen, Y.T., Wilkinson, J.M., Smith, R.L.: What are the local and systemic biologic reactions and mediators to wear debris and what host factors determine or modulate the biologic response to wear particles? J. Am. Acad. Orthop. Surg. 16, S42–S48 (2008)PubMedGoogle Scholar
  10. 10.
    Purdue, P.E., Koulouvaris, P., Nestor, B.J., Sculco, T.P.: The central role of wear debris in periprosthetic osteolysis. HSS J. 2, 102–113 (2006). doi: 10.1007/s11420-006-9003-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Skinner, H.B.: Ceramic bearing surfaces. Clin. Orthop. Relat. Res. 369, 83–91 (1999)PubMedCrossRefGoogle Scholar
  12. 12.
    Affatato, S., Spinelli, M., Zavalloni, M., Traina, F., Carmignato, S., Toni, A.: Ceramic-on-metal for total hip replacement: mixing and matching can lead to high wear. Artif. Organs 34, 319–323 (2010). doi: 10.1111/j.1525-1594.2009.00854.x PubMedCrossRefGoogle Scholar
  13. 13.
    D’Antonio, J.A., Sutton, K.: Ceramic materials as bearing surfaces for total hip arthroplasty. J. Am. Acad. Orthop. Surg. 17, 63–68 (2009)PubMedGoogle Scholar
  14. 14.
    García-Cimbrelo, E., García-Rey, E., Murcia-Mazón, A., Blanco-Pozo, A., Martí, E.: Alumina-on-alumina in THA: a multicenter prospective study. Clin. Orthop. Relat. Res. 466, 309–316 (2008). doi: 10.1007/s11999-007-0042-1 PubMedCrossRefGoogle Scholar
  15. 15.
    García-Rey, E., García-Cimbrelo, E., Cruz-Pardos, A., Ortega-Chamarro, J.: New polyethylenes in total hip replacement. A prospective comparative clinical study of two types of liner. J. Bone Joint Surg. Br. 90, 149–153 (2008). doi:DOI: 10.1302/0301-620X.90B2.19887PubMedGoogle Scholar
  16. 16.
    Brown, T.D., Lundberg, H.J., Pedersen, D.R., Callaghan, J.J.: 2009 Nicolas Andry award: clinical biomechanics of third body acceleration of total hip wear. Clin. Orthop. Relat. Res. 467, 1885–1897 (2009). doi: 10.1007/s11999-009-0854-2 PubMedCrossRefGoogle Scholar
  17. 17.
    Holt, G., Murnaghan, C., Reilly, J., Meek, R.M.: The biology of aseptic osteolysis. Clin. Orthop. Relat. Res. 460, 240–252 (2007). doi: 10.1097/BLO.0b013e31804b4147 PubMedGoogle Scholar
  18. 18.
    Doorn, P.F., Campbell, P.A., Worrall, J., Benya, P.D., McKellop, H.A., Amstutz, H.C.: Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J. Biomed. Mater. Res. 42, 103–111 (1998)PubMedCrossRefGoogle Scholar
  19. 19.
    Hatton, A., Nevelos, J.E., Nevelos, A.A., Banks, R.E., Fisher, J., Ingham, E.: Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials 23, 3429–3440 (2002)PubMedCrossRefGoogle Scholar
  20. 20.
    Dattani, R.: Femoral osteolysis following total hip replacement. Postgrad. Med. J. 83, 312–316 (2007). doi: 10.1136/pgmj.2006.053215 PubMedCrossRefGoogle Scholar
  21. 21.
    Agarwal, S.: Osteolysis-basic science, incidence and diagnosis. Curr. Orthop. 18, 220–231 (2004). doi: 10.1016/j.cuor.2004.03.002 CrossRefGoogle Scholar
  22. 22.
    Gallo, J., Raska, M., Mrázek, F., Petrek, M.: Bone remodeling, particle disease and individual susceptibility to periprosthetic osteolysis. Physiol. Res. 57, 339–349 (2008)PubMedGoogle Scholar
  23. 23.
    Goodman, S.B., Ma, T.: Cellular chemotaxis induced by wear particles from joint replacements. Biomaterials 31, 5045–5050 (2010). doi: 10.1016/j.biomaterials.2010.03.046 PubMedCrossRefGoogle Scholar
  24. 24.
    Drees, P., Eckardt, A., Gay, R.E., Gay, S., Huber, L.C.: Mechanisms of disease: molecular insights into aseptic loosening of orthopedic implants. Nat. Clin. Pract. Rheumatol. 3, 165–171 (2007). doi: 10.1038/ncprheum0428 PubMedCrossRefGoogle Scholar
  25. 25.
    Ingham, E., Fisher, J.: The role of macrophages in osteolysis of total joint replacement. Biomaterials 26, 1271–1286 (2005). doi: 10.1016/j.biomaterials.2004.04.035 PubMedCrossRefGoogle Scholar
  26. 26.
    Lacey, D.C., De Kok, B., Clanchy, F.I., Bailey, M.J., Speed, K., Haynes, D., Graves, S.E., Hamilton, J.A.: Low dose metal particles can induce monocyte/macrophage survival. J. Orthop. Res. 27, 1481–1486 (2009). doi: 10.1002/jor.20914 PubMedCrossRefGoogle Scholar
  27. 27.
    Ren, W., Markel, D.C., Schwendener, R., Ding, Y., Wu, B., Wooley, P.H.: Macrophage depletion diminishes implant-wear-induced inflammatory osteolysis in a mouse model. J. Biomed. Mater. Res. A 85, 1043–1051 (2008). doi: 10.1002/jbm.a.31665 PubMedGoogle Scholar
  28. 28.
    Revell, P.A.: The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J. R. Soc. Interface 5, 1263–1278 (2008). doi: 10.1098/rsif.2008.0142 PubMedCrossRefGoogle Scholar
  29. 29.
    Fujikawa, Y., Itonaga, I., Kudo, O., Hirayama, T., Taira, H.: Macrophages that have phagocytosed particles are capable of differentiating into functional osteoclasts. Mod. Rheumatol. 15, 346–351 (2005). doi: 10.1007/s10165-005-0424-8 PubMedCrossRefGoogle Scholar
  30. 30.
    Maitra, R., Clement, C.C., Scharf, B., Crisi, G.M., Chitta, S., Paget, D., Purdue, P.E., Cobelli, N., Santambrogio, L.: Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol. Immunol. 47, 175–184 (2009). doi: 10.1016/j.molimm.2009.09.023 PubMedCrossRefGoogle Scholar
  31. 31.
    Xing, Z., Schwab, L.P., Alley, C.F., Hasty, K.A., Smith, R.A.: Titanium particles that have undergone phagocytosis by macrophages lose the ability to activate other macrophages. J. Biomed. Mater. Res. B Appl. Biomater. 85, 37–41 (2008). doi: 10.1002/jbm.b.30913 PubMedGoogle Scholar
  32. 32.
    Nakashima, Y., Sun, D.H., Trindade, M.C., Maloney, W.J., Goodman, S.B., Schurman, D.J., Smith, R.L.: Signaling pathways for tumor necrosis factor-alpha and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J. Bone Joint Surg. Am. 81, 603–615 (1999)PubMedCrossRefGoogle Scholar
  33. 33.
    Rakshit, D.S., Lim, J.T., Ly, K., Ivashkiv, L.B., Nestor, B.J., Sculco, T.P., Purdue, P.E.: Involvement of complement receptor 3 (CR3) and scavenger receptor in macrophage responses to wear debris. J. Orthop. Res. 24, 2036–2044 (2006). doi: 10.1002/jor.20275 PubMedCrossRefGoogle Scholar
  34. 34.
    Zolotarevová, E., Hudeček, J., Spundová, M., Entlicher, G.: Binding of proteins to ultra high molecular weight polyethylene wear particles as a possible mechanism of macrophage and lymphocyte activation. J. Biomed. Mater. Res. A 95(3), 950–955 (2010)PubMedGoogle Scholar
  35. 35.
    Lähdeoja, T., Pajarinen, J., Kouri, V.P., Sillat, T., Salo, J., Konttinen, Y.T.: Toll-like receptors and aseptic loosening of hip endoprosthesis-a potential to respond against danger signals? J. Orthop. Res. 28, 184–190 (2010). doi: 10.1002/jor.20979 PubMedGoogle Scholar
  36. 36.
    Smith, R.A., Hallab, N.J.: In vitro macrophage response to polyethylene and polycarbonate-urethane particles. J. Biomed. Mater. Res. A 93, 347–355 (2010). doi: 10.1002/jbm.a.32529 PubMedGoogle Scholar
  37. 37.
    Wilkins, R., Tucci, M., Benghuzzi, H.: Evaluation of endotoxin binding to uhmwpe and inflammatory mediator production by macrophages. Biomed. Sci. Instrum. 44, 459–464 (2008)PubMedGoogle Scholar
  38. 38.
    Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., Koo, G.C., Calderwood, S.K.: HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435–442 (2000)PubMedCrossRefGoogle Scholar
  39. 39.
    Vallés, G., Vilaboa, N., Munuera, L., García-Cimbrelo, E.: Hsp72: a new mediator in wear particles-induced osteolysis. 11th European Federation of National Associations of Ortho­paedics and Traumatology Congress (EFFORT), 2–5 June, Madrid (2010)Google Scholar
  40. 40.
    Vallés, G., González-Melendi, P., González-Carrasco, J.L., Saldaña, L., Sánchez-Sabaté, E., Munuera, L., Vilaboa, N.: Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials 27, 5199–5211 (2006). doi: 10.1016/j.biomaterials.2006.05.045 PubMedCrossRefGoogle Scholar
  41. 41.
    Liu, F., Zhu, Z., Mao, Y., Liu, M., Tang, T., Qiu, S.: Inhibition of titanium particle-induced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide. Biomaterials 30, 1756–1762 (2009). doi: 10.1016/j.biomaterials.2008.12.018 PubMedCrossRefGoogle Scholar
  42. 42.
    Beidelschies, M.A., Huang, H., McMullen, M.R., Smith, M.V., Islam, A.S., Goldberg, V.M., Chen, X., Nagy, L.E., Greenfield, E.M.: Stimulation of macrophage TNFalpha production by orthopaedic wear particles requires activation of the ERK1/2/Egr-1 and NF-kappaB pathways but is independent of p38 and JNK. J. Cell. Physiol. 217, 652–666 (2008). doi:10.1002/jcp. 21539PubMedCrossRefGoogle Scholar
  43. 43.
    Goodman, S.B., Ma, T., Chiu, R., Ramachandran, R., Smith, R.L.: Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials 27, 6096–6101 (2006). doi: 10.1016/j.biomaterials.2006.08.023 PubMedCrossRefGoogle Scholar
  44. 44.
    Vallés, G., González-Melendi, P., Saldaña, L., Rodriguez, M., Munuera, L., Vilaboa, N.: Rutile and titanium particles differentially affect the production of osteoblastic local factors. J. Biomed. Mater. Res. A 84, 324–336 (2008). doi: 10.1002/jbm.a.31315 PubMedGoogle Scholar
  45. 45.
    Ma, G.K., Chiu, R., Huang, Z., Pearl, J., Ma, T., Smith, R.L., Goodman, S.B.: Polymethy­lmethacrylate particle exposure causes changes in p38 MAPK and TGF-beta signaling in differentiating MC3T3-E1 cells. J. Biomed. Mater. Res. A 94, 234–240 (2010). doi: 10.1002/jbm.a.32686 PubMedGoogle Scholar
  46. 46.
    Saldaña, L., Vilaboa, N.: Effects of micrometric titanium particles on osteoblast attachment and cytoskeleton architecture. Acta Biomater. 6, 1649–1660 (2010). doi: 10.1016/j.actbio.2009.10.033 PubMedCrossRefGoogle Scholar
  47. 47.
    Granchi, D., Amato, I., Battistelli, L., Ciapetti, G., Pagani, S., Avnet, S., Baldini, N., Giunti, A.: Molecular basis of osteoclastogenesis induced by osteoblasts exposed to wear particles. Biomaterials 26, 2371–2379 (2005). doi: 10.1016/j.biomaterials.2004.07.0145 PubMedCrossRefGoogle Scholar
  48. 48.
    Lohmann, C.H., Dean, D.D., Köster, G., Casasola, D., Buchhorn, G.H., Fink, U., Schwartz, Z., Boyan, B.D.: Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials 23, 1855–1863 (2002)PubMedCrossRefGoogle Scholar
  49. 49.
    Choi, M.G., Koh, H.S., Kluess, D., O’Connor, D., Mathur, A., Truskey, G.A., Rubin, J., Zhou, D.X., Sung, K.L.: Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc. Natl Acad. Sci. USA 102, 4578–4583 (2005). doi: 10.1073/pnas.0500693102 PubMedCrossRefGoogle Scholar
  50. 50.
    Heinemann, D.E., Lohmann, C., Siggelkow, H., Alves, F., Engel, I., Köster, G.: Human osteoblast-like cells phagocytose metal particles and express the macrophage marker CD68 in vitro. J. Bone Joint Surg. Br. 82, 283–289 (2000)PubMedCrossRefGoogle Scholar
  51. 51.
    Vermes, C., Roebuck, K.A., Chandrasekaran, R., Dobai, J.G., Jacobs, J.J., Glant, T.T.: Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts. J. Bone Miner. Res. 15, 1756–1765 (2000)PubMedCrossRefGoogle Scholar
  52. 52.
    Chiu, R., Ma, T., Smith, R.L., Goodman, S.B.: Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J. Biomed. Mater. Res. A 89, 242–247 (2009). doi: 10.1002/jbm.a.32001 PubMedGoogle Scholar
  53. 53.
    Schofer, M.D., Fuchs-Winkelmann, S., Kessler-Thönes, A., Rudisile, M.M., Wack, C., Paletta, J.R., Boudriot, U.: The role of mesenchymal stem cells in the pathogenesis of Co-Cr-Mo particle induced aseptic loosening: an in vitro study. Biomed. Mater. Eng. 18, 395–403 (2008). doi: 10.3233/BME-2008-0556 PubMedGoogle Scholar
  54. 54.
    McEvoy, A., Jeyam, M., Ferrier, G., Evans, C.E., Andrew, J.G.: Synergistic effect of particles and cyclic pressure on cytokine production in human monocyte/macrophages: proposed role in periprosthetic osteolysis. Bone 30, 171–177 (2002)PubMedCrossRefGoogle Scholar
  55. 55.
    Tan, S.D., de Vries, T.J., Kuijpers-Jagtman, A.M., Semeins, C.M., Everts, V., Klein-Nulend, J.: Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41, 745–751 (2007). doi: 10.1016/j.bone.2007.07.019 PubMedCrossRefGoogle Scholar
  56. 56.
    Kanaji, A., Caicedo, M.S., Virdi, A.S., Sumner, D.R., Hallab, N.J., Sena, K.: Co-Cr-Mo alloy particles induce tumor necrosis factor alpha production in MLO-Y4 osteocytes: a role for osteocytes in particle-induced inflammation. Bone 45, 528–533 (2009). doi: 10.1016/j.bone.2009.05.020 PubMedCrossRefGoogle Scholar
  57. 57.
    Atkins, G.J., Welldon, K.J., Holding, C.A., Haynes, D.R., Howie, D.W., Findlay, D.M.: The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials 30, 3672–3681 (2009). doi: 10.1016/j.biomaterials.2009.03.035 PubMedCrossRefGoogle Scholar
  58. 58.
    Huang, Z., Ma, T., Ren, P.G., Smith, R.L., Goodman, S.B.: Effects of orthopedic polymer particles on chemotaxis of macrophages and mesenchymal stem cells. J. Biomed. Mater. Res. A 94, 1264–1269 (2010). doi: 10.1002/jbm.a.32803 PubMedGoogle Scholar
  59. 59.
    Greenfield, E.M., Bi, Y., Ragab, A.A., Goldberg, V.M., Van De Motter, R.R.: The role of osteoclast differentiation in aseptic loosening. J. Orthop. Res. 20, 1–8 (2002)PubMedCrossRefGoogle Scholar
  60. 60.
    Ren, W., Wu, B., Mayton, L., Wooley, P.H.: Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal calvaria in vitro organ system. J. Orthop. Res. 20, 1031–1037 (2002)PubMedCrossRefGoogle Scholar
  61. 61.
    Vallés, G., Gil-Garay, E., Munuera, L., Vilaboa, N.: Modulation of the cross-talk between macrophages and osteoblasts by titanium-based particles. Biomaterials 29, 2326–2335 (2008). doi: 10.1016/j.biomaterials.2008.02.011 PubMedCrossRefGoogle Scholar
  62. 62.
    Park, Y.G., Kang, S.K., Kim, W.J., Lee, Y.C., Kim, C.H.: Effects of TGF-beta, TNF-alpha, IL-beta and IL-6 alone or in combination, and tyrosine kinase inhibitor on cyclooxygenase expression, prostaglandin E2 production and bone resorption in mouse calvarial bone cells. Int. J. Biochem. Cell Biol. 36, 2270–2280 (2004). doi: 10.1016/j.biocel.2004.04.019 PubMedCrossRefGoogle Scholar
  63. 63.
    Horowitz, S.M., Gonzales, J.B.: Inflammatory response to implant particulates in a macrophage/osteoblast coculture model. Calcif. Tissue Int. 59, 392–396 (1996)PubMedCrossRefGoogle Scholar
  64. 64.
    Liu, X.H., Kirschenbaum, A., Yao, S., Levine, A.C.: Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology 146, 1991–1998 (2005). doi: 10.1210/en.2004-1167 PubMedCrossRefGoogle Scholar
  65. 65.
    Zreiqat, H., Crotti, T.N., Howlett, C.R., Capone, M., Markovic, B., Haynes, D.R.: Prosthetic particles modify the expression of bone-related proteins by human osteoblastic cells in vitro. Biomaterials 24, 337–346 (2003)PubMedCrossRefGoogle Scholar
  66. 66.
    Horowitz, S.M., Rapuano, B.P., Lane, J.M., Burstein, A.H.: The interaction of the macrophage and the osteoblast in the pathophysiology of aseptic loosening of joint replacements. Calcif. Tissue Int. 54, 320–324 (1994)PubMedCrossRefGoogle Scholar
  67. 67.
    Rodrigo, A., Vallés, G., Saldaña, L., Rodríguez, M., Martínez, M.E., Munuera, L., Vilaboa, N.: Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J. Orthop. Res. 24, 46–54 (2006). doi: 10.1002/jor.20007 PubMedCrossRefGoogle Scholar
  68. 68.
    St Pierre, C.A., Chan, M., Iwakura, Y., Ayers, D.C., Kurt-Jones, E.A., Finberg, R.W.: Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-­particles. J. Orthop. Res. 28, 1418–1424 (2010). doi: 10.1002/jor.21149 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Gema Vallés
    • 1
    • 2
  • Eduardo García-Cimbrelo
    • 2
    • 3
  • Nuria Vilaboa
    • 1
    • 2
    Email author
  1. 1.Hospital Universitario La Paz-IdiPAZMadridSpain
  2. 2.Centro de Investigación Biomédica en Red de. Bioingeniería Biomateriales y Nanomedicina, CIBER-BBNMadridSpain
  3. 3.Departamento de Cirugía Ortopédica y TraumatologíaHospital Universitario La PazMadridSpain

Personalised recommendations