Skip to main content

Optical Materials and Their Properties

  • Chapter
Book cover Springer Handbook of Lasers and Optics

Abstract

This chapter provides an extended overview on todayʼs optical materials, which are commonly used for optical components and systems. In Sect. 5.1 the underlying physical background on light–matter interaction is presented, where the phenomena of refraction (linear and nonlinear), reflection, absorption, emission and scattering are introduced. Sections 5.25.8 focus on the detailed properties of the most common types of optical materials, such as glass, glass ceramics, optoceramics, crystals, and plastics. In addition, special materials displaying “unusual nonlinear” or “quasi-nonreversible” optical behavior such as photorefractive or photorecording solids are described in Sect. 5.10. The reader could use this chapter as either a comprehensive introduction to the field of optical materials or as a reference text for the most relevant material information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

absorbing ion

ALON:

aluminum oxynitride

AR:

antireflection

ARS:

angle-resolved scattering

BGO:

Bi12GeO20

BSO:

Bi12SiO20

BTO:

Bi12TiO20

CA:

central atom

CCD:

charge-coupled device

CD:

compact disc

CIE:

Commission Internationale de lʼEclairage

CN-PPV:

poly(para-phenyleneethylene)

COC:

cyclic olefin copolymer

COP:

cyclic olefin polymer

CT:

computed tomography

CTE:

coefficient of thermal expansion

CVD:

chemical vapor deposition

CW:

continuous wave

DCM:

4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran

DFWM:

degenerate four-wave mixing

DWDM:

dense wavelength division multiplexed

EL:

electroluminescence

EN:

European Normalization

EN:

electroless nickel

EO:

electrooptic

EOM:

electrooptic modulator

FOM:

figure of merit

FWM:

four-wave mixing

FZP:

Fresnel zone plate

GOS:

Gd2O2S

HEP:

high-energy physics

HID:

high-intensity discharge

HIP:

hot isostatic press

HMO:

heavy metal oxide

HOMO:

highest occupied molecular orbital

IAD:

ion-assisted deposition

IR:

infrared

ITO:

indium–tin oxide

KDP:

potassium dihydrogen phosphate

KLM:

Kerr-lens mode-locking

KTN:

KTa1-x Nb x O3

LC:

liquid crystal

LD:

laser diode

LED:

light-emitting diode

LHO:

La2Hf2O7

LPPP:

ladder-PPP

LSR:

liquid silicone rubber

LUMO:

lowest unoccupied molecular orbital

MEH-PPV:

poly[2-methoxy-5(2-ethylhexyloxy)-1,4-phenylenevinylene]

MQW:

multiquantum well

MTF:

modulation transfer function

NA:

numerical aperture

NB:

narrow beam

NLO:

nonlinear optical

NPB:

N, N′-diphenyl-N, N′-denaphthyl-(1, 1′)-biphenyl-4, 4′-diamine

NRI:

nonresonant intrinsic

OD:

optical density

OD:

output diode

OFC:

oxygen-free copper

OLED:

organic light-emitting device

PC:

photonic crystal

PCA:

translucent polycrystalline aluminum

PDLC:

polymer-dispersed liquid crystal

PEDT/PSS:

polyethylenedioxythiophene/ polystyrylsulfonat

PET:

polyethylene

PET:

positron emission tomography

PF:

polyfluorene

PL:

photoluminescence

PMMA:

polymethylmethacrylate

PNLC:

polymer network liquid crystal

PPE:

personal protective equipment

PPP:

poly-p-phenylene

PPV:

poly-para-phenylenevinylene

PSU:

polysulfone

PT:

polythiophene

PVD:

physical vapor deposition

QPM:

quasi-phase matching

RE:

rare-earth

RMS:

root-mean-square

SBN:

Sr1-x Ba x Nb2O6

SC:

supercontinuum

SCSi:

single-crystal silicon

SHG:

second-harmonic generation

SI:

Système International

SM:

small molecule

STP:

standard temperature and pressure

THG:

third-harmonic generation

TM:

transition metal

TM:

transversal magnetic

TM:

transverse magnetic

TPA:

two-photon absorption

TPD:

N, N′-diphenyl-N, N′-bis-(3-methylphenyl)-(1, 1′)-biphenyl-4-4′-diamine

UFC:

ultra fast ceramics

UV:

ultraviolet

Vis:

visible

YAG:

yttrium aluminium garnet

References

  1. J. Jackson: Classical Electrodynamics (Wiley, New York 1975)

    MATH  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz: The Classical Theory of Fields (Addison Wesley, New York 1971)

    Google Scholar 

  3. C. Kittel: Introduction to Solid State Physics (Oldenbourg, Munich 1988)

    Google Scholar 

  4. H. Haken: Quantum Field Theory of Solids (Teubner, Stuttgart 1973)

    Google Scholar 

  5. A. Sommerfeld: Optics: Lectures on Theoretical Physics, Vol. IV (Academic, New York 1954)

    MATH  Google Scholar 

  6. A.C. Hardy, F.H. Perrin: The Principles of Optics (McGraw-Hill, New York 1932)

    MATH  Google Scholar 

  7. C.S. Williams, O.A. Becklund: Optics: A Short Course for Engineers and Scientists (Wiley, New York 1972)

    Google Scholar 

  8. W.G. Driscoll, W. Vaughan (Eds.): Handbook of Optics (McGraw-Hill, New York 1978)

    Google Scholar 

  9. D. Halliday, R. Resnick, J. Walker: Fundamentals of Physics, 4th edn. (Wiley, New York 1993)

    Google Scholar 

  10. J.H. Simmons, K.S. Potter: Optical Materials (Academic, New York 2000)

    Google Scholar 

  11. E. Hecht: Optics, 4th edn. (Addison Wesley, New York 2002)

    Google Scholar 

  12. S. Singh: Refractive index measurement and its applications, Phys. Scr. 65(2), 167–180 (2002)

    Article  ADS  MATH  Google Scholar 

  13. S. Tominaga, N. Tanaka: Refractive index estimation and color image rendering, Pattern Recognit. Lett. 24(11), 1703–1713 (2003)

    Article  Google Scholar 

  14. J.E. Shelby: Introduction to Glass Science and Technology (The Royal Society of Chemistry, Cambridge 1997)

    Google Scholar 

  15. H. Bach, N. Neurorth (Eds.): The Properties of Optical Glass (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  16. J.V. Hughes: A new precision refractometer, J. Rev. Sci. Instrum. 18, 234 (1941)

    Article  ADS  Google Scholar 

  17. A.B.P. Lever: Inorganic Electronic Spectroscopy (Elsevier, New York 1968)

    Google Scholar 

  18. C.R. Bamford: Colour Generation and Control in Glass (Elsevier, New York 1977)

    Google Scholar 

  19. A. Paul: Chemistry of Glass (Chapman Hall, New York 1990)

    Google Scholar 

  20. D.C. Harris, M.D. Bertolucci: Symmetry, Spectroscopy: An Introduction to Vibrational, Electronic Spectroscopy (Dover, New York 1978)

    Google Scholar 

  21. M. Born, E. Wolf: Principles of Optics (Cambridge Univ. Press, Cambridge 1999) p. 218

    Google Scholar 

  22. I.B. Bersuker: Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory (Wiley, New York 1996)

    Google Scholar 

  23. B. Douglas, D. McDaniel, J. Alexander: Concepts and Models of Inorganic Chemistry, 3rd edn. (Wiley, New York 1994)

    Google Scholar 

  24. C.K. Jorgensen: Spectroscopy of transition-group complexes, Adv. Chem. Phys. 5, 33–145 (1963)

    Article  Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin: Solid State Physics (Thomson, Stamford 2000)

    Google Scholar 

  26. J.D. Jackson: Classical Electrodynamics (Wiley, New York 1975)

    MATH  Google Scholar 

  27. J.F. Nye: Physical Properties of Crystals (Oxford Univ. Press, Oxford 1957)

    MATH  Google Scholar 

  28. M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1986)

    Google Scholar 

  29. H. Vogel: Gerthsen Physik (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  30. B.E.A. Saleh, M.C. Teich: Fundamentals of Photonics (Wiley, New York 1991)

    Book  Google Scholar 

  31. Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)

    Google Scholar 

  32. W. Nie: Optical nonlinearity: Phenomena, applications and materials, Adv. Mater. 5, 520–545 (1993), and cited papers

    Article  Google Scholar 

  33. C.F. Klingshirn: Semiconductor Optics (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  34. N.F. Borrelli, D.W. Hall: Nonlinear optical properties of glasses. In: Optical Properties of Glass, ed. by D.R. Uhlmann, N.J. Kreidl (American Ceramic Society, Westerville 1991) pp. 87–124

    Google Scholar 

  35. P. Chakraborty: Metal nanoclusters in glasses as nonlinear photonic materials, J. Mater. Sci. 33, 2235–2249 (1998)

    Article  ADS  Google Scholar 

  36. E.M. Vogel, M.J. Weber, D.M. Krol: Nonlinear optical phenomena in glass, Phys. Chem. Glasses 32, 231–250 (1991), and cited papers

    Google Scholar 

  37. E.M. Vogel: Glasses as nonlinear photonic materials, J. Am. Ceram. Soc. 72, 719–724 (1989)

    Article  Google Scholar 

  38. I. Kang, T.D. Krauss, F.W. Wise, B.G. Aitken, N.F. Borrelli: Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses, J. Opt. Soc. Am. B 12, 2053–2059 (1995)

    Article  ADS  Google Scholar 

  39. H. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, H. Nasu: Second harmonic generation in poled tellurite glasses, Jpn. J. Appl. Phys. 32(2), 843 (1993)

    Article  ADS  Google Scholar 

  40. K. Hirao, T. Mitsuyu, J. Si, J. Qiu: Active Glasses for Photonic Devices (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  41. K. Hirao: Active Glass Project NEWS, 99.8 Final Rep. No. 3 (Japan Science and Technology Agency, Kawaguchi City 1999)

    Google Scholar 

  42. H. Nasu, J.D. MacKenzie: Nonlinear optical properties of glass and glass or gel based compositions, Opt. Eng. 26, 102–106 (1987)

    Google Scholar 

  43. J.S. Aitchinson, J.D. Prohaska, E.M. Vogel: The nonlinear optical properties of glass, Met. Mater. Proc. 8, 277–290 (1996)

    Google Scholar 

  44. B.G. Potter, M.B. Sinclair: Photosensitive, rare earth doped ceramics for optical sensing, J. Electroceram. 2, 295–308 (1998)

    Article  Google Scholar 

  45. F. Ishh, T. Sawatari, A. Odajima: NMR study of chain orientation in drawn poly(vinylidene fluoride) films I. The effects of poling on the double orientation distribtion function, Jpn. J. Appl. Phys. 27, 1047–1053 (1988)

    Article  ADS  Google Scholar 

  46. M.G. Kuzyk, K.D. Singer, H.E. Zahn, L.A. King: Second-order nonliniear-optical tensor properties of poled films under stress, J. Opt. Soc. Am. B 6, 742 (1989)

    Article  ADS  Google Scholar 

  47. S. Miyata, H. Sasabe: Poled Polymers, their Applications to SHG and EO Devices (Taylor Francis, New York 1997)

    Google Scholar 

  48. W. Koechner: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1976)

    Google Scholar 

  49. H.C. Van de Hulst: Light Scattering by Small Particles (Dover, New York 1981)

    Google Scholar 

  50. G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 25, 377–445 (1908), in German, Vierte Folge

    Article  MATH  Google Scholar 

  51. A. Ishimaru: Wave Propagation and Scattering in Random Media (IEEE, Piscataway 1997)

    MATH  Google Scholar 

  52. C. Bohren, D. Huffman: Absorption, Scattering of Light by Small Particles (Wiley, New York 1983)

    Google Scholar 

  53. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  54. P. Debye, A.M. Bueche: Scattering by an inhomogeneous solid, J. Appl. Phys. 20, 518 (1949)

    Article  ADS  Google Scholar 

  55. C.S. Johnson, D.A. Gabriel: Laser Light Scattering (Dover, New York 1981)

    Google Scholar 

  56. A. Dogariu: Volume Scattering in Random Media. In: Handbook of Optics, Part 1 Classical Optics, Vol. III, ed. by M. Bass (McGraw-Hill, New York 2001), Chap. 3

    Google Scholar 

  57. P.D. Kaplan, A.D. Dinsmore, A.G. Yodh: Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures, Phys. Rev. E 50, 4827 (1994)

    Article  ADS  Google Scholar 

  58. J.M. Elson, H.E. Bennett, J.M. Bennett: Scattering from optical surfaces. In: Applied Optics and Optical Engineering, Vol. 7, ed. by R. Shannon, J. Wyant (Academic, New York 1979), Chap. 7

    Google Scholar 

  59. A. Ishimaru: Wave Propagation and Scattering in Random Media (IEEE, Piscataway 1997)

    MATH  Google Scholar 

  60. A. Duparré: Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components, Appl. Opt. 41, 154–171 (2002)

    Article  ADS  Google Scholar 

  61. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  62. S. Musikant: Optical Materials (Dekker, New York 1985), where text, figures and tables are partly from pp. 210–228 with adaptations to the notations of this handbook

    Google Scholar 

  63. H.J. Hoffmann: Photochromic Glasses. In: The Properties of Optical Glass, Schott Ser. Glass Glass Ceram., ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1995) pp. 275–290, Chap. 8.2

    Google Scholar 

  64. W.H. Armistead, S.D. Stookey: Photochromic silicate glasses sentized by silver halides, Science 144, 150–158 (1964)

    Article  ADS  Google Scholar 

  65. F.-T. Lentes: Refractive index and dispersion. In: The Properties of Optical Glass, ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1998) pp. 19–57

    Chapter  Google Scholar 

  66. H.G. Pfänder: Optische Gläser und Brillengläser. In: Schott Glaslexikon, ed. by H.G. Pfänder (mvg, Landsberg 1997) pp. 129–142, in German

    Google Scholar 

  67. B. Jaschke: Einfluß der Wissenschaften. In: Glasherstellung, ed. by B. Jaschke (Deutsches Museum, Munich 1997) pp. 79–86, in German

    Google Scholar 

  68. H.G. Pfänder: Geschichte des Glases. In: Schott Glaslexikon, ed. by H.G. Pfänder (mvg, Landsberg 1997) pp. 13–23, in German

    Google Scholar 

  69. N.J. Kreidl: Optical properties. In: Handbook of Glass Manufacture, ed. by F.V. Tooley (Books for Industry, New York 1974) pp. 957–997

    Google Scholar 

  70. B. Jaschke: Neuerungen in der Glasherstellung. In: Glasherstellung, ed. by B. Jaschke (Deutsches Museum, Munich 1997) pp. 65–78, in German

    Google Scholar 

  71. M.K.T. Clement: The chemical composition of optical glasses and its influence on the optical properties. In: The Properties of Optical Glass, ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1998) pp. 58–81

    Google Scholar 

  72. G.F. Brewster, N.J. Kreidl, T.G. Pett: Lanthanum and barium in glass-forming system, J. Soc. Glass Technol. 31, 153–169 (1947)

    Google Scholar 

  73. W. Jahn: Mehrstoffsysteme zum Aufbau optischer Gläser, Glastechn. Ber. 43, 107–120 (1961), in German

    Google Scholar 

  74. W.H. Zachariasen: Die Struktur der Gläser, Glastechn. Ber. 11, 120–123 (1933), in German

    Google Scholar 

  75. W.H. Zachariasen: The atomic arrangement in glass, J. Am. Chem. Soc. 54, 3841–3851 (1932)

    Article  Google Scholar 

  76. B.E. Warren, A.D. Loring: X-ray diffraction study of the structure of soda–silica glasses, J. Am. Ceram. Soc. 18, 269–276 (1935)

    Article  Google Scholar 

  77. K. Fajans, N.J. Kreidl: Stability of lead glasses, polarization of ions, J. Am. Ceram. Soc. 31, 105–114 (1948)

    Article  Google Scholar 

  78. J.E. Stanworth: On the structure of glass, J. Soc. Glass Technol. 32, 154–172 (1948)

    Google Scholar 

  79. A.M. Bishay, P. Askalani: Properties of antimony glasses in relation to structure, C. R. VIIe Congr. Int. du Verre, Bruxelles (Maison dʼEdition, Marcinelle 1965), Part 1, Nr. 24

    Google Scholar 

  80. S. Wolff, U. Kolberg: Environmental friendly optical glasses. In: The Properties of Optical Glass, ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1998) pp. 144–148

    Google Scholar 

  81. H. Bach, N. Neuroth: The Properties of Optical Glass, Schott Ser. Glass (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  82. C.R. Bamford: Colour Generation and Control in Glass (Elsevier, Amsterdam 1977)

    Google Scholar 

  83. W.A. Weyl: Coloured Glasses (Society of Glass Technology, Sheffield 1951)

    Google Scholar 

  84. W. Vogel: Glaschemie (Springer, Berlin, Heidelberg 1992) pp. 51–313, in German

    Google Scholar 

  85. K. Nassau: The varied causes of colour in glass, Mat. Res. Soc. Symp. Proc. 61, 427–439 (1986)

    Article  Google Scholar 

  86. T. Bates: Ligand field theory, absorption spectra of transition-metal ions in glasses. In: Modern Aspects of the Vitreous State, Vol. 2, ed. by J.D. Mackenzie (Butterworth, London 1962) pp. 195–254

    Google Scholar 

  87. L.E. Orgel: An Introduction to Transition Metal Chemistry and Ligand Field Theory (Methuen, London 1960)

    Google Scholar 

  88. H.L. Schläfer, G. Gliemann: Einführung in die Ligandenfeldtheorie (Akademische Verlagsgesellschaft, Frankfurt/Main 1967), in German

    Google Scholar 

  89. C.J. Ballhausen: Introduction to Ligand Field Theory (McGraw-Hill, New York 1962)

    MATH  Google Scholar 

  90. C.K. Jorgensen: Absorption Spectra and Chemical Bonding in Complexes (Pergamon, Oxford 1962)

    Google Scholar 

  91. A. Bishay, A. Kinawi: Absorption spectra of iron in phosphate glasses and ligand field theory, Phys. Non-Cryst. Solids 2, 589–605 (1965)

    Google Scholar 

  92. C.F. Bohren: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983)

    Google Scholar 

  93. M. Kerker: The Scattering of Light and Other Electromagnetic Radiation (Academic, New York 1969)

    Google Scholar 

  94. M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1986)

    Google Scholar 

  95. H.P. Rooksby: The colour of selenium ruby glasses, J. Soc. Glass Technol. 16, 171–181 (1932)

    Google Scholar 

  96. G. Schmidt: Optische Untersuchungen an Selenrubingläsern, Silikattechnik 14, 12–18 (1963), in German

    Google Scholar 

  97. A. Rehfeld, R. Katzschmann: Farbbildung und Kinetik von Steilkanten-Anlaufgläsern, Silikattechnik 29, 298–302 (1978), in German

    Google Scholar 

  98. G. Walter, R. Kranold, U. Lemke: Small angle x-ray scattering characterization of inorganic glasses, Makromol. Chem. Makromol. Symp. 15, 361–372 (1988)

    Article  Google Scholar 

  99. T. Yanagawa, Y. Sasaki, H. Nakano: Quantum size effects, observation of microcrystallites in coloured filter glasses, Appl. Phys. Lett. 54, 1495–1497 (1989)

    Article  ADS  Google Scholar 

  100. J.L. Emmett, W.F. Krupke, J.B. Trenholme: The Future Development of High-Power Solid State Laser Systems (Lawrence Livermore National Laboratory, Livermore 1982)

    Google Scholar 

  101. A.H. Clauer: New life for laser shock processing, Ind. Laser Rev. March, 7–9 (1996)

    Google Scholar 

  102. E. Snitzer: Optical laser action of Nd3+ in a barium crown glass, Phys. Rev. Lett. 7, 444–446 (1961)

    Article  ADS  Google Scholar 

  103. S.E. Stokowski, R.A. Saroyan, M.J. Weber: Laser Glass Nd-Doped Glass Spectroscopic and Physical Properties (Lawrence Livermore National Laboratory, Livermore 1981) pp. 1–9, M-95, Rev. 2

    Google Scholar 

  104. J.H. Pitts: Modeling laser damage caused by platinum inclusions in laser glass, laser induced damage in optical materials, Techn. Dig. Boulder Damage Symp., Boulder (NBS, Boulder 1986) pp. 537–542

    Google Scholar 

  105. J.H. Campbell, E.P. Wallerstein, J.S. Hayden, D.L. Sapak, D.E. Warrington, A.J. Marker III, H. Toratani, H. Meissner, S. Nakajima, T. Izumitani: Elimination of Platinum Inclusions in Phosphate Laser Glasses (Lawrence Livermore National Laboratory, Livermore 1989)

    Google Scholar 

  106. R. Wood: Laser Damage in Optical Materials (IOP Publishing Limited, Bristol, Great Britain 1986)

    Google Scholar 

  107. D.C. Brown: High-Peak-Power Nd:Glass Laser Systems (Springer, Berlin, Heidelberg 1981), Chap. 6

    Google Scholar 

  108. D.H. Roach, A.R. Cooper: The effect of etch depth on strength of indented soda lime glass rods. In: Strength of Inorganic Glass, ed. by C.R. Kurkjian (Plenum, New York 1985) pp. 185–195

    Google Scholar 

  109. W.C. LaCourse: The strength of glass. In: Introduction to Glass Science, ed. by L.D. Pye, H.J. Stevens, W.C. LaCourse (Plenum, New York 1972) pp. 451–512

    Google Scholar 

  110. P.W. McMillan: Glass-Ceramics (Academic, London 1979) p. 285

    Google Scholar 

  111. W. Holand, G.H. Beall: Glass-Ceramic Technology (The American Ceramic Society, Westerville 2002) p. 372

    Google Scholar 

  112. W. Pannhorst: Low expansion glass ceramics – current developments, Proc. 7th Int. Otto Schott Coll., Jena, ed. by C. Ruessel, G. Volksch (Verlag der Deutschen Glastechnischen Gesellschaft, Frankfurt 2002) p. 78

    Google Scholar 

  113. S. Cramer von Clausbruch, M. Schweiger, W. Hoeland, V. Rheinberger: Effect of ZnO on the crystallization, microstructure, properties of glass-ceramics in the SiO2–Li2O–ZnO–K2O–P2O5 system, Glass Sci. Technol. 74, 223 (2001)

    Google Scholar 

  114. M.M. Layton, J.W. Smith: Pyroelectric response in transparent ferroelectric glass, J. Am. Ceram. Soc. 58, 435 (1975)

    Article  Google Scholar 

  115. T. Komatsu, J. Onuma, H.G. Kim, J.R. Kim: Formation of Rb-doped crystalline phase with second harmonic generation in transparent K2O–Nb2O5–TeO2 glass ceramics, J. Mater. Sci. Lett. 15, 2130 (1996)

    Article  Google Scholar 

  116. F.C. Guinhos, P.C. Nobrega, P.A. Santa-Cruz: Compositional dependence of up-conversion process in Tm3+–Yb3+ codoped oxyfluoride glasses and glass-ceramics, J. Alloys Compd. 323, 358 (2001)

    Article  Google Scholar 

  117. M. Secu, S. Schweizer, J.M. Spaeth, A. Edgar, G.V.M. Williams, U. Rieser: Photostimulated luminescence from a fluorobromozirconate glass-ceramic and the effect of crystallite size and phase, J. Phys. Condens. Matter 15, 1097 (2003)

    Article  ADS  Google Scholar 

  118. G.H. Beall: Glass-ceramics for photonic applications, Glass Sci. Technol. 73, 3 (2000)

    Google Scholar 

  119. J.A. Tangeman, B.L. Phillips, A. Navrotsky, J.K.R. Weber, A.D. Hixson, T.S. Key: Vitreous forsterite (Mg_2SiO_4): Synthesis, structure, thermochemistry, Geophys. Res. Lett. 28, 2517 (2001)

    Article  ADS  Google Scholar 

  120. H. Bach (Ed.): Low Thermal Expansion Glass Ceramics (Springer, Berlin, Heidelberg 1995) p. 223

    Google Scholar 

  121. P.F. James: Kinetics of crystal nucleation in lithium silicate glasses, Phys. Chem. Glasses 15, 95 (1974)

    Google Scholar 

  122. A.C. Lasaga: Kinetic Theory in the Earth Sciences (Princeton Univ. Press, Princeton 1998) p. 811

    Google Scholar 

  123. P.A. Tick, N.F. Borrelli, I.M. Reaney: The relationship between structure and transparency in glass-ceramic materials, Opt. Mater. 15, 81 (2000)

    Article  ADS  Google Scholar 

  124. K. Shioya, T. Komatsu, H.G. Kim, R. Sato, K. Matusita: Optical properties of transparent glass-ceramics in K2O–Nb2O5–TeO2 glasses, J. Non-Cryst. Solids 189, 16 (1995)

    Article  ADS  Google Scholar 

  125. H.A. Miska: Aerospace and military applications. In: Ceramics and Glasses, ed. by S.R. Lampman, M.S. Woods, T.B. Zorc (ASM Int., Materials Park 1991) p. 1016

    Google Scholar 

  126. P.W. McMillan, G. Partridge: Dielectric properties of certain ZnO–Al2O3–SiO2 glass-ceramics, J. Mater. Sci. 7, 847 (1972)

    Article  ADS  Google Scholar 

  127. A.P. Tomsia, J.A. Pask, R.E. Loehman: Glass/metal and glass-ceramic/metal seals. In: Ceramics and Glasses, ed. by S.R. Lampman, M.S. Woods, T.B. Zorc (ASM Int., Materials Park 1991) p. 493

    Google Scholar 

  128. Ohara Corporation: Glass-Ceramic Substrates for Planar Light Circuits (SA-02), Commercial Literature (Ohara Corporation, Japan 2003)

    Google Scholar 

  129. W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics, 2nd edn. (Wiley, New York 1976) p. 1032

    Google Scholar 

  130. R.B. Roberts, R.J. Tainsh, G.K. White: Thermal properties of Zerodur at low temperatures, Cryogenics 22, 566 (1982)

    Article  Google Scholar 

  131. S.W. Freiman, L.L. Hench: Effect of crystallization on mechanical properties of Li2O–SiO2 glass-ceramics, J. Am. Ceram. Soc. 55, 86 (1972)

    Article  Google Scholar 

  132. S.S. Bayya, J.S. Sanghera, I.D. Aggarwal, J.A. Wojcik: Infrared transparent germanate glass-ceramics, J. Am. Ceram. Soc. 85, 3114 (2002)

    Article  Google Scholar 

  133. Y. Tada, F. Kawano, M. Kon, N. Matsumoto, K. Asaoka: Influence of crystallization on strength and color of castable glass-ceramics containing two crystals, Biomed. Mater. Eng. 5, 233 (1995)

    Google Scholar 

  134. B.R. Lawn, T.R. Wilshaw, T.I. Barry, R. Morrell: Hertzian fracture of glass ceramics, J. Mater. Sci. 10, 179 (1975)

    Article  ADS  Google Scholar 

  135. R. Morena, K. Niihara, D.P.H. Hasselman: Effect of crystallites on surface damage and fracture-behavior of a glass-ceramic, J. Am. Ceram. Soc. 66, 673 (1983)

    Article  Google Scholar 

  136. T.J. Hill, J.J. Mecholsky, K.J. Anusavice: Fractal analysis of toughening behavior in 3BaO⋅5SiO2 glass-ceramics, J. Am. Ceram. Soc. 83, 545 (2000)

    Article  Google Scholar 

  137. D. Mittleman (Ed.): Sensing with Terahertz Radiation (Springer, Berlin, Heidelberg 2003) p. 337

    Google Scholar 

  138. A.J. Moulson, J.M. Herbert: Electroceramics (Chapman Hall, London 1990) p. 464

    Google Scholar 

  139. A. Herczog: Microcrystalline BaTiO_3 by crystallization from glass, J. Am. Ceram. Soc. 47, 107 (1964)

    Article  Google Scholar 

  140. N.F. Borrelli: Electrooptic effect in transparent niobate glass-ceramic systems, J. Appl. Phys. 38, 4243 (1967)

    Article  ADS  Google Scholar 

  141. O.P. Thakur, D. Kumar, O.M. Parkash, L. Pandey: Crystallization, microstructure development and dielectric behaviour of glass ceramics in the system [SrO⋅TiO2]–[2SiO2 ⋅B2O3]–La2O3, J. Mater. Sci. 37, 2597 (2002)

    Article  Google Scholar 

  142. F. Agullo-Lopez, J.M. Cabera, F. Agullo-Rueda: Electrooptics: Phenomena, Materials and Applications (Academic, London 1994) p. 345

    Google Scholar 

  143. H. Bach, N. Neuroth (Eds.): The Properties of Optical Glass (Springer, Berlin, Heidelberg 1995) p. 410

    Google Scholar 

  144. K.J. Anusavice, N.-Z. Zhang, J.E. Moorhead: Influence of P_2O_5, AgNO_3, FeCl_3 on color, translucency of lithia-based glass-ceramics, Dent. Mater. 10, 230 (1994)

    Article  Google Scholar 

  145. V.M. Khomenko, K. Langer, R. Wirth: On the influence of wavelength-dependent light scattering on the UV-VIS absorption spectra of oxygen-based minerals: A study on silicate glass ceramics as model substances, Phys. Chem. Min. 30, 98 (2003)

    Article  ADS  Google Scholar 

  146. G.H. Beall, D.A. Duke: Transparent glass ceramics, J. Mater. Sci. 4, 340 (1969)

    Article  ADS  Google Scholar 

  147. C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983) p. 530

    Google Scholar 

  148. F.M. Modest: Radiative Heat Transfer (McGraw-Hill, New York 1993) p. 832

    Google Scholar 

  149. R.W. Hopper: Stochastic-theory of scattering from idealized spinodal structures 2 scattering in general and for the basic late stage model, J. Non-Cryst. Solids 70, 111 (1985)

    Article  ADS  Google Scholar 

  150. R. Menzel: Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer, Berlin, Heidelberg 2001) p. 873

    Google Scholar 

  151. S. Hendy: Light scattering in transparent glass ceramics, Appl. Phys. Lett. 81, 1171 (2002)

    Article  ADS  Google Scholar 

  152. W. Pannhorst: Zerodur – A low thermal expansion glass ceramic for optical precision applications. In: Low Thermal Expansion Glass Ceramics, ed. by H. Bach (Springer, Berlin, Heidelberg 1995) p. 107

    Google Scholar 

  153. P. Pernice, A. Aronne, V.N. Sigaev, P.D. Sarkisov, V.I. Molev, S.Y. Stefanovich: Crystallization behavior of potassium niobium silicate glasses, J. Am. Ceram. Soc. 82, 3447 (1999)

    Article  Google Scholar 

  154. G.S. Murugan, K.B.R. Varma: Dielectric, linear and non-linear optical properties of lithium borate–bismuth tungstate glasses and glass-ceramics, J. Non-Cryst. Solids 279, 1 (2001)

    Article  ADS  Google Scholar 

  155. N.F. Borrelli, M.M. Layton: Dielectric and optical properties of transparent ferroelectric glass-ceramic systems, J. Non-Cryst. Solids 6, 197 (1971)

    Article  ADS  Google Scholar 

  156. A. Halliyal, A.S. Bhalla, R.E. Newnham, L.E. Cross: Glass-ceramics for piezoelectric and pyroelectric devices. In: Glass and Glass Ceramics, ed. by M.H. Lewis (Chapman Hall, London 1989) p. 273

    Google Scholar 

  157. Y.-H. Kao, Y. Hu, H. Zheng, J.D. Mackenzie, K. Perry, G. Bourhill, J.W. Perry: Second harmonic generation in transparent barium borate glass-ceramics, J. Non-Cryst. Solids 167, 247 (1994)

    Article  ADS  Google Scholar 

  158. N.F. Borrelli, A. Herczog, R.D. Maurer: Electro-optic effect of ferroelectric microcrystals in a glass matrix, Appl. Phys. Lett. 7, 117 (1965)

    Article  ADS  Google Scholar 

  159. N.F. Borrelli: Electrooptic effect in transparent niobate glass, J. Appl. Phys. 38, 4243 (1967)

    Article  ADS  Google Scholar 

  160. S. Ito, T. Kokubo, M. Tashiro: Transparency of LiTaO3–SiO2–Al2O3 glass-ceramics in relation to their microstructure, J. Mater. Sci. 13, 930 (1978)

    Article  ADS  Google Scholar 

  161. A. Herczog: Phase distribution and transparency in glass-ceramics based on a study of the sodium niobate–silica system, J. Am. Ceram. Soc. 73, 2743 (1990)

    Article  Google Scholar 

  162. T. Kokubo, M. Tashiro: Fabrication of transparent lead titanate(IV) glass, Bull. Inst. Chem. Res. Kyoto Univ. 54, 301 (1976)

    Google Scholar 

  163. Y. Fujimoto, Y. Benino, T. Fujiwara, R. Sato, T. Komatsu: Transparent surface and bulk crystallized glasses with lanthanide tellurite nanocrystals, J. Ceram. Soc. Jpn. 109, 466 (2001)

    Article  Google Scholar 

  164. H.G. Kim, T. Komatsu, K. Shioya, K. Matusita, K. Tanaka, K. Hirao: Transparent tellurite-based glass-ceramics with second harmonic generation, J. Non-Cryst. Solids 208, 303 (1996)

    Article  ADS  Google Scholar 

  165. R.T. Hart, M.A. Anspach, B.J. Kraft, J.M. Zaleski, J.W. Zwanziger, P.J. DeSanto, B. Stein, J. Jacob, P. Thiyagarajan: Optical implications of crystallite symmetry and structure in potassium niobate tellurite glass ceramics, Chem. Mater. 14, 4422 (2002)

    Article  Google Scholar 

  166. N.S. Prasad, K.B.R. Varma: Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7–SrO–Bi2O3–Nb2O5, Mater. Sci. Eng. B 90, 246 (2002)

    Article  Google Scholar 

  167. G.S. Murugan, K.B.R. Varma: Characterization of lithium borate–bismuth tungstate glasses, glass-ceramics by impedance spectroscopy, Solid State Ion. 139, 105 (2001)

    Article  Google Scholar 

  168. V.N. Sigaev, P. Pernice, A. Aronne, O.V. Akimova, S.Y. Stefanovich, A. Scaglione: KTiOPO_4 precipitation from potassium titanium phosphate glasses, producing second harmonic generation, J. Non-Cryst. Solids 292, 59 (2001)

    Article  ADS  Google Scholar 

  169. Y. Balci, M. Ceylan, M.E. Yakinci: An investigation on the activation energy and the enthalpy of the primary crystallization of glass-ceramic Bi-rich BSCCO HTc superconductors, Mater. Sci. Eng. B 86, 83 (2001)

    Article  Google Scholar 

  170. A. Edgar, S. Schweizer, S. Assmann, J.M. Spaeth, P.J. Newman, D.R. MacFarlane: Photoluminescence and crystallization in europium-doped fluorobromozirconate glass-ceramics, J. Non-Cryst. Solids 284, 237 (2001)

    Article  ADS  Google Scholar 

  171. G. Muller, N. Neuroth: Glass ceramic as an active laser material, US Patent 3843551 (1974)

    Google Scholar 

  172. A. Lempicki, M. Edwards, G.H. Beall, D. Hall, L.J. Andrews: Transparent Glass Ceramics (Optical Society of America, Arlington, VA 1985), Laser Prospects, in Topical Meeting on Tunable Solid State Lasers

    Google Scholar 

  173. R. Reisfeld, C.K. Jorgensen: Excited-states of chromium(III) in translucent glass-ceramics as prospective laser materials, Struct. Bond. 69, 63 (1988)

    Article  Google Scholar 

  174. R. Reisfeld: Potential uses of chromium(III)-doped transparent glass ceramics in tunable lasers and luminescent solar concentrators, Mater. Sci. Eng. 71, 375 (1985)

    Article  Google Scholar 

  175. P.A. Tick, N.F. Borrelli, L.K. Cornelius, M.A. Newhouse: Transparent glass ceramics for 1300 nm, J. Appl. Phys. 78, 6367 (1995)

    Article  ADS  Google Scholar 

  176. A.M. Malyarevich, I.A. Denisov, K.V. Yumashev, O.S. Dymshits, A.A. Zhilin, U. Kang: Cobalt-doped transparent glass ceramic as a saturable absorber Q switch for Er:glass lasers, Appl. Opt. 40, 4322 (2001)

    Article  ADS  Google Scholar 

  177. C.F. Rapp, J. Chrysochoos: Neodymium-doped glass-ceramic laser material, J. Mater. Sci. Lett. 7, 1090 (1972)

    Article  ADS  Google Scholar 

  178. G. Muller, N. Neuroth: Glass ceramic – A new laser host material, J. Appl. Phys. 44, 2315 (1973)

    Article  ADS  Google Scholar 

  179. C.F. Rapp, J. Chrysochoos: Fluorescence lifetimes of Neodymium-doped glasses and glass ceramics, J. Phys. Chem. 77, 1016 (1973)

    Article  Google Scholar 

  180. Y.H. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+, Yb3+ for efficient frequency up-conversion, Appl. Phys. Lett. 63, 3268 (1993)

    Article  ADS  Google Scholar 

  181. P.A. Tick, N.F. Borrelli, L.K. Cornelius, M.A. Newhouse: Transparent glass ceramics for 1300 nm amplifier applications, J. Appl. Phys. 78, 6367 (1995)

    Article  ADS  Google Scholar 

  182. M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149 (1998)

    Article  ADS  Google Scholar 

  183. Y. Kawamoto, R. Kanno, J. Qiu: Upconversion luminescence of Er3+ in transparent SiO2–PbF2–ErF3 glass ceramics, J. Mater. Sci. 33, 63 (1998)

    Article  Google Scholar 

  184. M. Takahashi, M. Izuki, R. Kanno, Y. Kawamoto: Up-conversion characteristics of Er3+ in transparent oxyfluoride glass-ceramics, J. Appl. Phys. 83, 3920 (1998)

    Article  ADS  Google Scholar 

  185. M. Mortier, G. Patriarche: Structural characterisation of transparent oxyfluoride glass ceramics, J. Mater. Sci. 35, 4849 (2000)

    Article  Google Scholar 

  186. L.L. Kukkonen, I.M. Reaney, D. Furniss, M.G. Pellatt, A.B. Seddon: Nucleation and crystallisation of transparent, erbium III-doped, oxyfluoride glass-ceramics, J. Non-Cryst. Solids 290, 25 (2001)

    Article  ADS  Google Scholar 

  187. M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255 (2001)

    Article  ADS  Google Scholar 

  188. M. Mortier: Between glass and crystal: Glass-ceramics, a new way for optical materials, Philos. Mag. B 82, 745 (2002)

    Article  ADS  Google Scholar 

  189. V.K. Tikhomirov, D. Furniss, A.B. Seddon, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, R. Rolli: Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics, Appl. Phys. Lett. 81, 1937 (2002)

    Article  ADS  Google Scholar 

  190. J. Mendez-Ramos, V. Lavin, I.R. Martin, U.R. Rodriguez-Mendoza, V.D. Rodriguez, A.D. Lozano-Gorrin, P. Nunez: Optical properties of rare earth doped transparent oxyfluoride glass ceramics, Radiat. Eff. Defects Solids 158, 457 (2003)

    Article  ADS  Google Scholar 

  191. A.M. Malyarevich, I.A. Denisov, K.V. Yumashev, O.S. Dymshits, A.A. Zhilin: Optical absorption, luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics, J. Opt. Soc. Am. B 19, 1815 (2002)

    Article  ADS  Google Scholar 

  192. A.M. Malyarevich, I.A. Denisov, Y.V. Volk, K.V. Yumashev, O.S. Dymshits, A.A. Zhilin: Nanosized glass ceramics doped with transition metal ions: Nonlinear spectroscopy and possible laser applications, J. Alloys Compd. 341, 247 (2002)

    Article  Google Scholar 

  193. C.Y. Li, Q. Su, S.B. Wang: Multi-color long-lasting phosphorescence in Mn2+-doped ZnO–B2O3–SiO2 glass ceramics, Mater. Res. Bull. 37, 1443 (2002)

    Article  Google Scholar 

  194. G.H. Beall: Glass-ceramics: Recent developments and applications. In: Nucleation and Crystallization in Liquids and Glasses, ed. by M.C. Weinberg (The American Ceramic Society, Westerville 1993)

    Google Scholar 

  195. G.H. Beall, L.R. Pinckney: Nanophase glass ceramics, J. Am. Ceram. Soc. 82, 5 (1999)

    Article  Google Scholar 

  196. I. Mitra, M.J. Davis, J. Alkemper, R. Mueller, H. Kohlmann, L. Aschke, E. Moersen, S. Ritter, H. Hack, W. Pannhorst: Thermal expansion behavior of proposed EUVL substrate materials, Proc. SPIE 4688, 462–468 (2002)

    Article  ADS  Google Scholar 

  197. N. Reisert: Application and machining of Zerodur for optical purposes, Proc. SPIE 1400, 171 (1991)

    Article  ADS  Google Scholar 

  198. L.N. Allen: Progress in ion figuring large optics, Proc. SPIE 2428, 237–247 (1995)

    Article  ADS  Google Scholar 

  199. L. Noethe: Active optics in modern large optical telescopes, Prog. Opt. 43, 1 (2002)

    Article  Google Scholar 

  200. C.A. Haniff: High angular resolution studies of stellar atmospheres, IAU Symp.: Galaxies and their Constituents at the Highest Angular Resolutions (2001) pp. 288–295

    Google Scholar 

  201. S.D. Stookey: Catalyzed crystallization of glass in theory and practice, Ind. Eng. Chem. 51, 805 (1959)

    Article  Google Scholar 

  202. B. Rother, A. Mucha: Transparent glass-ceramic coatings: Property distribution on 3D parts, Surf. Coat. Technol. 124, 128 (2000)

    Article  Google Scholar 

  203. J. Hirao, T. Mitsuyu, J. Si, J. Qiu: Active Glasses for Photonic Devices (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  204. W. Nie: Optical nonlinearity phenomena, applications, materials, Adv. Mater. 5, 520–545 (1993), and cited papers

    Article  Google Scholar 

  205. E.M. Vogel, M.J. Weber, D.M. Krol: Nonlinear optical phenomena in glass, Phys. Chem. Glasses 32, 231–250 (1991), and cited papers

    Google Scholar 

  206. A.J. Hayden, A.J. Marker: Glass as a nonlinear optical material, Proc. SPIE 1327, 132–144 (1990)

    Article  ADS  Google Scholar 

  207. R. Shechter, E. Millul, Y. Amitai, A.A. Friesem, V. Weiss: Hybrid polymer-on-glass integrated optical diffractive structures for wavelength discrimination, Opt. Mater. 17, 165–167 (2001)

    Article  ADS  Google Scholar 

  208. Transparencies and oral communication J. Hayden: SCHOTT North America

    Google Scholar 

  209. Frost & Sullivan: Technical Insights – Photonic Materials: Global Opportunities and Markets in Optical Ceramics; Polymers; Composites; Semiconductors and Nanomaterials, Date Published: 10 Feb 2000

    Google Scholar 

  210. V.G. Dmitriev, G.G. Gurzadya, D.N. Nikogosyan: Handbook of Nonlinear Optical Crystals (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  211. P. Chakraborty: Metal nanoclusters in glasses as nonlinear photonic materials, J. Mater. Sci. 33, 2235–2249 (1998)

    Article  ADS  Google Scholar 

  212. H.R. Xia, J.H. Zou, H.C. Chen, D.L. Sun: Photorefractive properties of Co-doped potassium sodium strontium barium niobate crystals, Cryst. Res. Technol. 34, 403–407 (1999)

    Article  Google Scholar 

  213. H.R. Xia, C.J. Wang, H.C. Chen, X.L. Lu: Photorefractive properties of manganese-modified potassium sodium strontium barium niobate crystals, Phys. Rev. B 55, 1292–1294 (1997)

    Article  ADS  Google Scholar 

  214. S. Zhang, Z. Cheng, H. Chen: A new oxyborate crystal GdCa_4O(BO_3)_3: Defects and optical properties, Defect Diffus. Forum 186/187, 79–106 (2000)

    Article  Google Scholar 

  215. V. Berger: Photonic crystals for nonlinear optical frequency conversion. In: Confined Photon Systems, Lecture Notes in Physics, Vol. 531, ed. by H. Benisty, J.-M. Gerard, R. Houdre, J. Rarity, C. Weisbuch (Springer, Berlin 1999) pp. 366–392

    Chapter  Google Scholar 

  216. H. Nasu, J.D. MacKenzie: Nonlinear optical properties of glas and glas or gel based compositions, Opt. Eng. 26, 102–106 (1987)

    Google Scholar 

  217. F. Kajzar, J. Swalen: Organic Thin Films for Waveguiding Nonlinear Optics, Advances in Nonlinear Optics, Vol. 3 (Gordon Breach, New York 1996)

    Google Scholar 

  218. K. Hirao: Active Glass Project NEWS, ʼ99.8 Final Rep. No. 3 (JST 1999)

    Google Scholar 

  219. K. Hirao: Active Glass Project NEWS, ʼ97.7 Final Rep. No. 2 (JST 1997)

    Google Scholar 

  220. G.I. Stegeman, E.M. Wright, N. Finlayson, R. Zanoni, C.T. Seaton: Third order nonlinear integrated optics, J. Lightwave Technol. 6, 953–967 (1988), and cited papers

    Article  ADS  Google Scholar 

  221. R.W. Bryant: Nonlinear Optical Materials: New Technologies, Applications, Markets (Business and Coorporation Inc., Norwalk 1989)

    Google Scholar 

  222. Y. Kondo, Y. Kuroiwa, N. Sugimoto, T. Manabe, S. Ito, T. Tokizaki, A. Nakamura: Third-order optical nonlinearities of CuCl-doped glasses in a near resonance region, J. Non-Cryst. Solids 6, 90–94 (1996)

    Article  ADS  Google Scholar 

  223. D.M. Krol, D.J. DiGiovanni, W. Pleibel, R.H. Stolen: Observation of resonant enhancement of photoinduced second-harmonic generation in Tm-doped aluminosilicate glass fibers, Opt. Lett. 18, 1220 (1993)

    Article  ADS  Google Scholar 

  224. N.M. Lawandy, R.L. MacDonald: Optically encoded phase-matched second-harmonic generation in semiconductor-microcrystallite-doped glasses, J. Opt. Soc. Am. B 8, 1307 (1991)

    Article  ADS  Google Scholar 

  225. E.M. Dianov, D.S. Starodubov, A.A. Izyneev: Photoinduced second-harmonic generation in fibers doped with rare-earth ions, Opt. Lett. 19, 936 (1994)

    Article  ADS  Google Scholar 

  226. E.M. Dianov, L.S. Kornienko, V.I. Stupina, P.V. Chernov: Correlation of defect centers with photoinduced second-harmonic generation in Er- and Sm-doped aluminosilicate fibers, Opt. Lett. 20, 1253–1255 (1995)

    Article  ADS  Google Scholar 

  227. D.M. Krol, D.J. DiGiovanni, K.T. Nelson, W. Pleibel, R.H. Stolen: Observation of resonant enhancement of photoinduced second-harmonic generation in Tm-doped aluminosilicate glass fibers, Opt. Lett. 18, 1220–1222 (1993)

    Article  ADS  Google Scholar 

  228. J. Khaled, T. Fujiwara, A.J. Ikushima: Optimization of second-order nonlinearity in UV-poled silica glass, Opt. Mater. 17, 275–278 (2001)

    Article  ADS  Google Scholar 

  229. I.S. Fogel, J.M. Bendickson, M.D. Tocci, M.J. Bloemer, M. Scalora, C.M. Bowden, J.P. Dowling: Spontaneous emission and nonlinear effects in photonic bandgap materials, Pure Appl. Opt. 7, 393–407 (1998)

    Article  ADS  Google Scholar 

  230. F. Oulette, K.O. Hill, D.C. Johnson: Enhancement of second-harmonic generation in optical fibres by hydrogen heat treatment, Appl. Phys. Lett. 54, 1086 (1989)

    Article  ADS  Google Scholar 

  231. J.S. Aitchinson, J.D. Prohaska, E.M. Vogel: The nonlinear optical properties of glass, Met. Mater. Proc. 8, 277–290 (1996)

    Google Scholar 

  232. I. Kang, T.D. Krauss, F.W. Wise, B.G. Aitken, N.F. Borrelli: Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses, J. Opt. Soc. Am. B 12, 2053–2059 (1995)

    Article  ADS  Google Scholar 

  233. J. Fu, H. Yatsuda: New families of glasses based on Bi_2O_3, Phys. Chem. Glasses 36, 211–215 (1995)

    Google Scholar 

  234. N.F. Borrelli, B.G. Aitken, M.A. Newhouse, D.W. Hall: Electric field induced birefringence properties of high-refractive-index glasses exhibiting large Kerr nonlinearities, J. Appl. Phys. 70(5), 2774–2779 (1991)

    Article  ADS  Google Scholar 

  235. S. Santran, L. Canioni, T. Cardinal, E. Fargin, G. Le Flem, C. Rouyer, L. Sarger: Precise and absolute measurements of the complex third-order optical susceptibility, Proc. SPIE 4106, 349–359 (2000)

    Article  ADS  Google Scholar 

  236. E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, A. Ducasse: Optical nonlinearity in oxide glasses, J. Non-Cryst. Solids 203, 96–101 (1996)

    Article  ADS  Google Scholar 

  237. T. Cardinal, K.A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J.F. Viens, A. Villeneuve: Nonlinear optical properties of chalcogenide doped glasses in the system As–S–Se, J. Non-Cryst. Solids 256/257, 353–360 (1999)

    Article  Google Scholar 

  238. B. Speit, K.E. Remitz, N. Neuroth: Semiconductor doped glass as a nonlinear material, Proc. SPIE 1361, 1128–1131 (1990)

    Article  ADS  Google Scholar 

  239. B. Danielzik, K. Nattermann, D. von der Linde: Nanosecond optical pulse shaping in cadmium-sulfide–selenide glasses, Appl. Phys. B 38, 31–36 (1985)

    Article  ADS  Google Scholar 

  240. H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao: Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system, Phys. Rev. B 57, 11334 (1998)

    Article  ADS  Google Scholar 

  241. H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, H. Nakatsuka: Ultrafast optical switching in a silver nanoparticle system, Jpn. J. Appl. Phys. 39, 5132–5133 (2000)

    Article  ADS  Google Scholar 

  242. B.G. Broome: The Design of Plastic Optical Systems, SPIE Short Course, Vol. 384 (SPIE, San Diego 2001)

    Google Scholar 

  243. X. Ning, R.T. Hebert (Eds.): Design, Fabrication and application of precision Plastic Optics, SPIE Proc., Vol. 2600 (SPIE, Bellingham 1995)

    Google Scholar 

  244. Corning Precision Lens: The Handbook of Plastic Optics, 2nd edn. (Corning Precision Lens, Owens-Corning 2000)

    Google Scholar 

  245. D.J. Butler: Plastic optics challenge glass, Photonics Spectra May, 168–171 (2000)

    Google Scholar 

  246. Optical Coating Laboratory Inc.: An Introduction to the Design, Manufacture and Application of Plastic Optics, Technical Information (2001)

    Google Scholar 

  247. A. Ning: Plastic Versus Glass Optics: Factors to Consider, SPIE SC, Vol. 384 (SPIE, San Diego 2001), short note

    Google Scholar 

  248. E. Bürkle, B. Klotz, P. Lichtinger: Durchblick im Spritzguss, KU Kunststoffe 11, 54–60 (2001), in German

    Google Scholar 

  249. M.B. Schaub: The design of plastic optical systems, SPIE Tutorial Text. Ser. 80, 201–206 (2009)

    ADS  Google Scholar 

  250. S. Bäumer (Ed.): Handbook of Plastic Optics, 2nd edn. (Wiley-VCH, Weinheim 2010) pp. 27–29

    Google Scholar 

  251. N. Kaiser, H.K. Pulker (Eds.): Optical Interference Coatings (Springer, Berlin, Heidelberg 2003) pp. 359–391

    Google Scholar 

  252. S. Musikant: Optical Materials (Dekker, New York 1990)

    Google Scholar 

  253. M.J. Weber: Handbook of Optical Materials (CRC, Boca Raton 2002)

    Book  Google Scholar 

  254. K.S. Potter, J. Simmons: Optical Materials (Academic, New York 2000)

    Google Scholar 

  255. V.L. Ginzburg: Electromagnetic waves in isotropic and crystalline media characterized by dielectric permittivity with spatial dispersion, JETP 34, 1096 (1958)

    MathSciNet  Google Scholar 

  256. V.M. Agranovich, V.L. Ginzburg: Crystal Optics with Spatial Dispersion and Excitons (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  257. J. Pastrnak, K. Vedam: Optical anisotropy of silicon single crystals, Phys. Rev. B 3, 2567 (1971)

    Article  ADS  Google Scholar 

  258. P.Y. Yu, M. Cardona: Spatial dispersion in the dielectric constant of GaAs, Solid State Commun. 9, 1421 (1971)

    Article  ADS  Google Scholar 

  259. C. Zaldo, C. Lopez, F. Meseguer: Natural birefringence in alkali halide single crystals, Phys. Rev. B 33, 4283 (1986)

    Article  ADS  Google Scholar 

  260. E.G. Tsitsishvili: Optical anisotropy of cubic crystals induced by spatial dispersion, Sov. Phys. Semicond. 15, 1152 (1981)

    Google Scholar 

  261. J.H. Burnett, Z.H. Levine, E.L. Shirley: Intrinsic birefringence in calcium fluoride and barium fluoride, Phys. Rev. B 64, 241102R (2001)

    Article  ADS  Google Scholar 

  262. M. Letz, L. Parthier, A. Gottwald, M. Richter: Spatial anisotropy of the exciton level in CaF_2 at 11.1 eV and its relation to the weak optical anisotropy at 157 nm, Phys. Rev. B 67, 233101 (2003)

    Article  ADS  Google Scholar 

  263. P. Frischholz: Brevier Technical Ceramics (Association of Ceramics Industries, Selb 2004), available at http://www.keramverband.de/brevier_engl/geschichte.htm

    Google Scholar 

  264. R.A. Haber, P.A. Smith: Overview of traditional ceramics. In: Engineered Materials Handbook, Ceramics and Glasses, Vol. 4, ed. by S.J. Schneider (ASM International, Materials Park 1991) p. 3

    Google Scholar 

  265. P. Frischholz: Brevier Technical Ceramics (Association of Ceramics Industries, Selb 2004), Chap. 6.5

    Google Scholar 

  266. R. Telle: Properties of ceramics. In: Handbook of Ceramic Grinding and Polishing, ed. by I.D. Marinescu, H.K. Tonshoff, I. Inasaki (Noyes, Park Ridge 2000) pp. 2–3

    Google Scholar 

  267. A. Krell, T. Hutzler, J. Klimke: Transparent ceramics for structural applications, Part 1: Physics of light transmission and technological consequences, Ber. Dtsch. Keram. Ges. 84(4), E44–E50 (2007)

    Google Scholar 

  268. R.L. Coble: Sintering crystalline solids II. Experimental test of diffusion models in powder compacts, J. Appl. Phys. 32, 793–799 (1961)

    Article  ADS  Google Scholar 

  269. R.L. Coble: Preparation of transparent ceramic Al_2O_3, Am. Ceram. Soc. Bull. 38, 507 (1959)

    Google Scholar 

  270. G.C. Wei: Structural and optical ceramics, Key Eng. Mater. 336–338, 905–910 (2007)

    Article  Google Scholar 

  271. A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida: Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc. 78, 1033–1040 (1995)

    Article  ADS  Google Scholar 

  272. A. Ikesue, Y.L. Aung: Ceramic laser materials, Nat. Photonics 2, 721–727 (2008)

    Article  ADS  Google Scholar 

  273. G.C. Wei: Transparent ceramic lamp envelope materials, J. Phys. D 38, 3057 (2005)

    Article  ADS  Google Scholar 

  274. J. Lu, J. Song, M. Prabhu, J. Xu, K.-I. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov: High-power Nd:Y3Al5O12 ceramic laser, Jpn. J. Appl. Phys. 39, L1048–L1050 (2000)

    Article  ADS  Google Scholar 

  275. J. Zhang, L.Q. An, M. Liu, S.W. Wang, L.D. Chen: The fabrication and optical spectroscopic properties of rare earth doped Y_2O_3 transparent ceramics, Proc. 3rd Laser Ceram. Symp. Paris (2007), paper IO-S-1

    Google Scholar 

  276. C.G. Dou, O.H. Yang, J. Xu: A novel Nd-doped yttrium lanthanum oxide transparent laser ceramics, Proc. 3rd Laser Ceram. Symp., Paris (2007), paper O-C-14

    Google Scholar 

  277. S.H. Lee, S. Kochawattana, G.L. Messing, J. Dumm: Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics, J. Am. Ceram. Soc. 89, 1945–1950 (2006)

    Article  Google Scholar 

  278. N.S. Prasad, W.C. Edwards, S.B. Trivedi, S.W. Kutcher, C.-C. Wang, J.-S. Kim, U. Hommerich, V. Shukla, R. Sadangi, B.H. Kear: Recent progress in the development of neodymium-doped ceramic yttria, IEEE J. Select. Top. Quantum Electron. 13, 831–837 (2007)

    Article  Google Scholar 

  279. J.C. Hulie, R. Gentilman, T.S. Stefanik: Domestically produced ceramic YAG laser gain material for high power SSLs, Proc. SPIE 6552, 65520B (2007)

    ADS  Google Scholar 

  280. A.C. Bravo, L. Longuest, D. Autissier, J.F. Baumard: Influence of the powder preparation on the sintering of Yb-doped Sc_2O_3 transparent ceramics, Opt. Mat. 31(5), 734–739 (2009)

    Article  Google Scholar 

  281. V. Lupei: Ceramic laser materials and the prospect for high power lasers, Opt. Mat. 31(5), 744–749 (2009)

    Article  Google Scholar 

  282. C. Greskovich, J. Chernoch: Polycrystalline ceramic lasers, J. Appl. Phys. 44, 4599 (1973)

    Article  ADS  Google Scholar 

  283. W. Rhodes: Controlled transient solid second-phase sintering of yttria, J. Am. Ceram. Soc. 64, 13–19 (1981)

    Article  Google Scholar 

  284. D. Roy: Hot pressed MgAl2O4 for UV visible and infrared optical requirements, Proc. SPIE 297, 13 (1981)

    ADS  Google Scholar 

  285. A. Ikesue, K. Kamata: Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics, J. Am. Ceram. Soc. 79, 1927 (1996)

    Article  Google Scholar 

  286. T. Yanagitani, H. Kubo, S. Imagawa, H. Yagi: Corrosion resistant ceramic and a production method thereof, European Patent 0926106A1 (Konoshima Chemical, Osaka 1998)

    Google Scholar 

  287. J.M. McCauley, N.D. Corbin: Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON), J. Am. Ceram. Soc. 62, 476 (1979)

    Article  Google Scholar 

  288. T.M. Hartnett, R.L. Gentilman: Optical and mechanical properties of highly transparent spinel and AlON domes, Proc. SPIE 505, 15 (1984)

    Google Scholar 

  289. J.M. McCauley, N.D. Corbin: Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON), J. Am. Ceram. Soc. 62, 476–479 (1979)

    Article  Google Scholar 

  290. T.M. Hartnett, R.L. Gentilman: Optical and mechanical properties of highly transparent spinel and AlON domes, Proc. SPIE 505, 1522 (1984)

    Google Scholar 

  291. D. W. Roy, Hot-Pressed MgAl2O4 for Ultraviolet (UV), Visible, and Infrared (IR) Optical Requirements, SPIE Vol. 297, Emerging Optical Materials pp. 13-18 (1981)

    Google Scholar 

  292. W. Rhodes: Controlled transient solid second-phase sintering of yttria, J. Am. Ceram. Soc. 64(1), 13–19 (1981)

    Article  MathSciNet  Google Scholar 

  293. A. Ikesue, Y. Lin Aung: Ceramic laser materials, Nat. Photon. 2, 721–727 (2008)

    Article  ADS  Google Scholar 

  294. A. Krell, T. Hutzler, J. Klimke: Transparent ceramics for structural applications, Part 2 Field of applications, Ber. Dtsch. Keram. Ges. 84(6), E50–E56 (2007)

    Google Scholar 

  295. R.L. Coble: Transparent alumina and method of preparation, US Patent 3026210 (1962)

    Google Scholar 

  296. H. Melas, I.F. Gureebaa, H. Merasu, J. Greber, J.F. Greber: Method for the manufacture of transparent aluminum oxide ceramic, US Patent 4952539 (1990)

    Google Scholar 

  297. O. Asano: Ceramic envelope for high intensity discharge lamp and method for producing polycrystalline transparent sintered alumina body, US Patent 6734128 (2004)

    Google Scholar 

  298. G.C. Wei: Characterization of internal interfaces in translucent polycrystalline alumina, Ceram. Trans. 146, 307 (2004)

    Google Scholar 

  299. G.C. Wei: Current trends for ceramics in the lightning industry, Key Eng. Mater. 247, 461 (2003)

    Article  Google Scholar 

  300. A. Krell, T. Hutzler, J. Klimke: Transparent ceramics for structural applications: Part 2: Field of applications, cfi/Ber DKG 84(6), E50–E6 (2007)

    Google Scholar 

  301. C. Scott, M. Kaliszewski, C. Greskovich, L. Levinson: Conversion of polycrystalline Al_2O_3 into single-crystal sapphire by abnormal grain growth, J. Am. Ceram. Soc. 85, 1275–1280 (2002)

    Article  Google Scholar 

  302. K. Hayashi, O. Kobayashi, S. Toyoda, K. Morinaga: Transmission optical properties of polycrystalline alumina with submicron grains, JIM Mat. Trans. 32(11), 1024 (1991)

    Google Scholar 

  303. D.D. Silva, A. Boccaccini: Industrial Developments in the field of optically transparent inorganic materials: A survey of recent patents, Recent Pat. Mater. Sci. 1, 56–73 (2008)

    Google Scholar 

  304. Range for crystals, glasses, polymers and liquids added by B. Schreder (Schott AG)

    Google Scholar 

  305. K. Yoshida, T. Yabe, S. Uchida, A. Ikesue, T. Kamimura: New trends on solid-state lasers, AIP Conf. Proc. 830, 14–20 (2006)

    Article  ADS  Google Scholar 

  306. V. Kvatchadze, T. Kalabegishvili, V. Vylet: Ceramic MgO:LiF: Promising material for selective detector, Radiat. Eff. Defects Solids 161(5), 305–311 (2006)

    Article  ADS  Google Scholar 

  307. K. Miyauchi, I. Matsuyama, G. Toda: HID lamps and electrooptical devices, US Patent 4019915 (1977), (JP48116839; JP49107821; JP49109552; JP49109553)

    Google Scholar 

  308. N. Ichinose, H. Ookuma, T. Mitzutani, H. Hiraki: HID lamps and electrooptical devices, US Patent 4131479 (1978)

    Google Scholar 

  309. Murata Inc.: Development of new material, transparent ceramics (Lumicera) http://www.murata.

  310. Y. Kintaka: HID lamps and electrooptical devices, Patent WO07049434 A1 (Murata Manufacturing Co., Ltd., Kyoto 2007)

    Google Scholar 

  311. K. Tsukuma: Zirconia sintered body of improved light transmittance, US Patent 4758541 & EP0206780 (Toyo Soda, Tosoh, 1998)

    Google Scholar 

  312. K. Tsukuma: Transparent titania-yttria-zirconia ceramics, J. Mater. Sci. Lett. 5, 1143–1144 (1986)

    Article  Google Scholar 

  313. K.C. Radford, R.J. Bratton: Zirconia electrolyte cells, Part 1, Sintering studies, J. Mater. Sci. 14, 59–65 (1979)

    Article  ADS  Google Scholar 

  314. K. Matsui, N. Ohmichi, M. Ohgai, H. Yoshida, Y. Ikuhara: Grain boundary segregation induced phase transformation in yttria stabilized tetragonal zirconia polycrystal, J. Ceram. Soc. Jpn. 114(1327), 230–237 (2006)

    Article  Google Scholar 

  315. A. Braun, R. Clasen, C. Oetzel, M. Wolff: Hochleistungskeramik aus Nanopulvermischungen für optische und dentale Anwendungen, Fortschrittsber. Dtsch. Keram. Ges. 20, 131–136 (2006), in German

    Google Scholar 

  316. M. Wolff, R. Clasen: Investigation on the transparent polycrystalline zirconia, Ber. Dtsch. Keram. Ges. 13, 166–169 (2005)

    Google Scholar 

  317. J. Klimke, A. Krell: Polycrystalline ZrO_2-transparent ceramics with high refractive index, Fraunhofer IKTS Annu. Rep. Dep.: Materials (2005) p. 23

    Google Scholar 

  318. R. Apetz, M.P.B. van Bruggen: Transparent alumina: A light scattering model, J. Am. Ceram. Soc. 86(3), 480–486 (2003)

    Article  Google Scholar 

  319. U. Peuchert, Y. Okano, Y. Menke, S. Reichel, A. Ikesue: Transparent ceramics for application as optical lenses, J. Eur. Ceram. Soc. 29, 283–291 (2009)

    Article  Google Scholar 

  320. T.M.G. Hartnett, R.L. Gentilman: Yttrium oxide: HID lamps, optical windows and military systems, US Patent 4761390 (1988)

    Google Scholar 

  321. B.P. Borglum: Yttrium oxide: HID lamps, optical windows and military systems, US Patent 5004712 (1991)

    Google Scholar 

  322. Y. Ji, D. Jiang, T. Fen, J. Shi: Fabrication of transparent La_2Hf_2O_7 ceramics from combustion synthesized powders, Mater. Res. Bull. 40(3), 553–559 (2005)

    Article  Google Scholar 

  323. U. Peuchert: Optoceramics, optical elements manufactured thereof and their use as well as imaging optics, US Patent 0278823 (2008)

    Google Scholar 

  324. S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto: Feasibility of immersion lithography, Proc. SPIE 5377, 264–272 (2004)

    Article  ADS  Google Scholar 

  325. R. Gupta, J.H. Burnett, U. Griesmann, M. Walhout: Absolute refractive indices and thermal coefficients of fused silica and calcium fluoride near 193 nm, Appl. Opt. 37, 5964–5968 (1998)

    Article  ADS  Google Scholar 

  326. J.H. Burnett, S.G. Kaplan: Measurement of the refractive index and thermo-optic coefficient of water near 193 nm, J. Microlithogr. Microfabr. Microsyst. 3, 68–72 (2004)

    Article  ADS  Google Scholar 

  327. T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, T. Shimokawa: Material design for immersion lithography with high refractive index fluid, Proc. SPIE 5753, 10–19 (2005)

    Article  ADS  Google Scholar 

  328. J.H. Burnett, S.G. Kaplan, E.L. Shirley, J.E. Webb: High index materials for 193 nm and 157 nm immersion lithography, Int. Symp. Immersion 157 nm Lithography, ed. by W. Trybula (International Sematech, Austin 2004)

    Google Scholar 

  329. M.E. Thomas, W.J. Tropf: Barium fluoride (BaF2). In: Handbook of Optical Constants of Solids, Vol. III, ed. by E.D. Palik (Academic, New York 1998) pp. 683–699

    Chapter  Google Scholar 

  330. W.J. Tropf, M.E. Thomas: Magnesium aluminum spinel (MgAl2O4). In: Handbook of Optical Constants of Solids, Vol. III, ed. by E.D. Palik (Academic, New York 1998) pp. 883–897

    Google Scholar 

  331. J.H. Burnett, S.G. Kaplan, E.L. Shirley, P.J. Tompkins, J.E. Webb: High-index materials for 193 nm immersion lithography, Proc. SPIE 5754, 611–621 (2004)

    Article  ADS  Google Scholar 

  332. M.C.L. Patterson, A.A. DiGiovanni, L. Fehrenbacher, D.W. Roy: Spinel: Gaining momentum in optical applications, Proc. SPIE 5078, 71–79 (2003)

    Article  ADS  Google Scholar 

  333. T.H. Maiman: Simulated optical radiation in ruby, Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  334. T.H. Maiman: Optical and microwave-optical experiments in ruby, Phys. Rev. Lett. 4, 546–566 (1960)

    Article  ADS  Google Scholar 

  335. E. Geusic, H.M. Marcos, L.G. van Uitert: Laser oscillation in Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets, Appl. Phys. Lett. 4, 182–184 (1964)

    Article  ADS  Google Scholar 

  336. J. Collard, R. C. Duncan, R. J. Pressley, F. Sterzer, T. Walsh: Solid State Laser Exportations, Interim Eng. Rep. 3 (Defense Technical Information Center, Ft. Belvoir 1964)

    Google Scholar 

  337. S.E. Hatch, W.F. Parsons, R.J. Weagley: Hot pressed polycrystalline CaF2:Dy2+ laser, Appl. Phys. Lett. 5, 153–154 (1964)

    Article  ADS  Google Scholar 

  338. C. Greskovich, K.N. Wood: Fabrication of transparent ThO2-doped Y_2O_3, Am. Ceram. Soc. Bull. 52, 473–478 (1973)

    Google Scholar 

  339. C. Greskovich, J.P. Chernoch: Polycrystalline ceramic laser, J. Appl. Phys. 44, 4599–4606 (1973)

    Article  ADS  Google Scholar 

  340. C. Greskovich, J.P. Chernoch: Improved polycrystalline ceramic laser, J. Appl. Phys. 45, 4495–4502 (1974)

    Article  ADS  Google Scholar 

  341. G. de With, H.J.A. van Dijk: Translucent Y3Al5O12 ceramic, Mater. Res. Bull. 19, 1669–1674 (1984)

    Article  Google Scholar 

  342. C.A. Mudler, G. de With: Translucent Y3Al5O12 ceramics: Electron microscopy characterization, Solid State Ion. 16, 81–86 (1985)

    Article  Google Scholar 

  343. M. Sekita, H. Haneda, T. Yanagitani, S. Shirasaki: Induced emission cross section of Nd:YAG ceramics, Jpn. J. Appl. Phys. 67, 453–458 (1990)

    Article  ADS  Google Scholar 

  344. A. Ikesue: Polycrystalline transparent ceramics for laser application, Japan Patent 3463941 (1992)

    Google Scholar 

  345. A. Ikesue, K. Kamata, K. Yoshida: Synthesis of transparent Nd-doped HfO_2-Y_2O_3 ceramics using HIP, J. Am. Ceram. Soc. 79, 359–364 (1996)

    Article  Google Scholar 

  346. N. Ter-Gabrielyan, L.D. Merkel, G.A. Newburgh, M. Dubinskii, A. Ikesue: Cryo-laser performance of resonantly pumped Er3+:Sc_2O_3 ceramic, Proc. Adv. Solid State Photonics, Nara (2008), TuB4

    Google Scholar 

  347. T. Yoda, S. Miyamoto, H. Tsuboya, A. Ikesue, K. Yoshida: Widely tunable CW Nd-doped Y_2O_3 ceramic laser, CLEO 2004, San Francisco (2006), Poster Section-III, CThT59

    Google Scholar 

  348. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A.A. Kaminskii: Diode-pumped mode-locked Yb3+:Lu_2O_3 ceramic laser, Opt. Express 14, 12832–12838 (2006)

    Article  ADS  Google Scholar 

  349. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanigitani, A.A. Kaminskii: Diode-pumped Kerr-lens mode-locked Yb3+:Sc_2O_3 ceramic laser, Proc. 3rd Laser Ceram. Symp., Paris (2007), O-L-2

    Google Scholar 

  350. T. Kamimura, T. Okamoto, Y.L. Aung, A. Ikesue: Ceramic YAG composite with Nd gradient structure for homogeneous absorption of pump power, CLEO 2007, Baltimore (2007), CThT6

    Google Scholar 

  351. A. Ikesue, Y.L. Aung: Synthesis and performance of advanced ceramic lasers, J. Am. Ceram. Soc. 89, 1936–1944 (2006)

    Article  Google Scholar 

  352. A. Ikesue, Y.L. Aung, T. Yoda, S. Nakayama, T. Kamimura: Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing, Opt. Mater. 29, 1289–1294 (2007)

    Article  ADS  Google Scholar 

  353. H. Yagi, T. Yanatigani: Transparent ceramics for photonic applications, 6th Laser Ceram. Symp., Münster (2010), available online at https://www.fh-muenster.de/iot/LCS-2010/lcs2010_talks.php?p=7,5

  354. G.R. Villalobos, J.J. Sanghera, S.S. Bayya, I.D. Aggarwal: HID lamps high T monitoring windows, WO06104540A2 (2006)

    Google Scholar 

  355. J.W. McCauley, N.D. Corbin: Aluminum oxynitride, US Patent 4241000 (1980)

    Google Scholar 

  356. C. Greskovich, S.J. Duclos: Ceramic scintillators, Annu. Rev. Mater. Sci. 27, 69–88 (1997)

    Article  ADS  Google Scholar 

  357. C. Greskovich, D.A. Cusano, R.J. Riedner, D. Hoffman: Ceramic scintillators for advanced, medical x-ray detectors, Am. Ceram. Soc. Bull. 71, 1120–1130 (1992)

    Google Scholar 

  358. C. Greskovich, D.A. Cusano, R.J. Riedner, D. Hoffman: Ceramic scintillators for advanced, medical x-ray detectors, Am. Ceram. Soc. Bull. 71(7), 1120–1130 (1992)

    Google Scholar 

  359. D.G. Chiyaaruzu, D.A. Cusano, F.A. DiBianca, C.D. Greskovich: Rare-earth-doped yttria-gadolinia ceramic scintillators, US Patent 4571312 (1986)

    Google Scholar 

  360. D.A. Cusano, F.A. DiBianca, A.D. Furanku, C.D. Greskovich: Preparation of yttria-gadolinia ceramic scintillators by vacuum hot pressing, US Patent 4473513 (1984)

    Google Scholar 

  361. D.G. Chiyaaruzu, D.A. Cusano, F.A. DiBianca, C.D. Greskovich: Rare-earth-doped yttria-gadolinia ceramic scintillators, US Patent 4518545 (1985)

    Google Scholar 

  362. C. Greskovich, S. Duclos: Ceramic scintillators, Annu. Rev. Mater. Sci. 27, 69–88 (1997)

    Article  ADS  Google Scholar 

  363. H. Yamada, A. Suzuki, Y. Uchida, M. Yoschida, H. Yamamoto: A scintillator Gd2O2S:Pr,Ce,F for x-ray computed tomography, J. Electrochem. Soc. 136, 2713–2720 (1989)

    Article  Google Scholar 

  364. W. Rossner, M. Ostertag, F. Jermann: Properties and applications of gadolinium oxysulfide based ceramic cintillators, Electrochem. Soc. Proc. 98(24), 187–194 (1999)

    Google Scholar 

  365. R. Hupke, C. Doubrava: The new UFC-detector for CT-imaging, Phys. Med. XV, 315–318 (1999)

    Google Scholar 

  366. W. Carel, E. van Eijk: Inorganic scintillators in medical imaging, Phys. Med. Biol. 47, R85–R106 (2002)

    Article  Google Scholar 

  367. J. J. Kutsch: Transparent Spinel Ceramics, Technology Assessment and Transfer (2011) http://www.techassess.com/tech/spinel/index.htm

  368. J. J. Kutsch: Spinel and Optical Ceramics – Armor Technology Assessment and Transfer (2011) http://www.techassess.com/tech/spinel/spinel_armor.htm

  369. Surmet datasheet http://www.surmet.com/docs/Processing_ALON.pdf

  370. A.M. Srivastava, S.J. Duclos, M.S. Oroku: Cubic garnet host with PR activator as a scintillator material, US Patent 6246744 (2001)

    Google Scholar 

  371. A.M. Srivastava, S.J. Duclos, M.S. Oroku: Cubic garnet host with PR activator as a scintillator material, US Patent 6358441 (2002)

    Google Scholar 

  372. V. Tsoukala, C.D. Guresukobichi, C. Greskovich: Hole-trap-compensated scintillator material, US Patent 5318722 (1994)

    Google Scholar 

  373. S. Dole, S. Venkataramani: Alkaline earth hafnate phosphor with cerium luminescence, US Patent 5124072 (1992)

    Google Scholar 

  374. V. Venkataramani, S. Loureiro, M. Rane, S.J. Duclos, C. Stearns, D. McDaniel: Transparant ceramic routes to scintillators, 2001 IEEE Nuclear Sci. Symp. Med. Imaging Conf., San Diego (2001), N8–4, 4–10

    Google Scholar 

  375. Y. Ji, D. Jiang, J. Shi: La_2Hf_2O_7:Ti4+ ceramic scintillator for x-ray imaging, J. Mater. Res. 20(3), 567–570 (2005)

    Article  ADS  Google Scholar 

  376. D. Jiang, J. Yaming, J. Danyu, S. Jianlin: High light output quick attenuation flash ceramic and its preparing method, CN1587196 A and CN100358834 C (Shanghai Inst. Ceramic CHemistry Technology)

    Google Scholar 

  377. Y.M. Ji, D.Y. Jiang, J.L. Shi: Preparation and spectroscopic properties of La_2Hf_2O_7:Tb, Mater. Lett. 59(8/9), 868–871 (2005)

    Article  Google Scholar 

  378. A. Chaudhry, A. Canning, R. Boutchko, M.J. Weber, N. Grønbech-Jensen, S.E. Derenzo: First-principles studies of Ce-doped RE_2M_2O_7 (RE = Y, La; M = Ti, Zr, Hf): A class of non-scintillators, J. Appl. Phys. 109, 083708 (2011)

    Article  ADS  Google Scholar 

  379. C. Bricot, M. Hareng, E. Spitz: Optical projection device and an optical reader incorporating this device, US Patent 4037929 (1977)

    Google Scholar 

  380. S. Sato: Liquid-crystal lens-cells with variable focal length, Jpn. J. Appl. Phys. 18, 1679–1684 (1979)

    Article  ADS  Google Scholar 

  381. S. Suyama, M. Date, H. Takada: Three-dimensional display system with dual-frequency liquid-crystal varifocal lens, Jpn. J. Appl. Phys. 39, 480–484 (2000)

    Article  ADS  Google Scholar 

  382. L.G. Commander, S.E. Day, D.R. Selviah: Variable focal microlenses, Opt. Commun. 177, 157–170 (2000)

    Article  ADS  Google Scholar 

  383. Y. Choi, J.H. Park, J.H. Kim, S.D. Lee: Fabrication of a focal length variable microlens array based on a nematic liquid crystal, Opt. Mater. 21, 643–646 (2002)

    Article  Google Scholar 

  384. S.T. Kowel, D.S. Cleverly, P.G. Kornreich: Focusing by electrical modulation of refraction in aliquid crystal cell, Appl. Opt. 23, 278–289 (1984)

    Article  ADS  Google Scholar 

  385. T. Nose, S. Sato: A liquid crystal microlens with a nonuniform electric field, Liq. Cryst. 5, 1425–1433 (1989)

    Article  Google Scholar 

  386. W. Klaus, M. Ide, Y. Hayano, S. Morokawa, Y. Arimoto: Adaptive LC lens array and its application, Proc. SPIE 3635, 66–73 (1999)

    Article  ADS  Google Scholar 

  387. B. Wang, M. Ye, M. Honma, T. Nose, S. Sato: Liquid crystal lens with spherical electrode, Jpn. J. Appl. Phys. 41, L1232–1233 (2002)

    Article  ADS  Google Scholar 

  388. A.F. Naumov, M.Y. Loktev, I.R. Guralnik, G. Vdovin: Liquid crystal adaptive lenses with modal control, Opt. Lett. 23, 992–994 (1998)

    Article  ADS  Google Scholar 

  389. A.F. Naumov, G.D. Love, M.Y. Loktev, F.L. Vladimirov: Control optimization of spherical modal liquid crystal lenses, Opt. Express 4, 344–352 (1999)

    Article  ADS  Google Scholar 

  390. G.D. Love, A.F. Naumov: Modal liquid crystal lenses, Liq. Cryst. Today 10(1), 1–4 (2001)

    Article  Google Scholar 

  391. J.S. Patel, K. Rastani: Electrically controlled polarization-independent liquid crystal Fresnel lens arrays, Opt. Lett. 16, 532–534 (1991)

    Article  ADS  Google Scholar 

  392. G. Williams, N.J. Powell, A. Purvis, M.G. Clark: Electrically controllable liquid crystal Fresnel lens, Proc. SPIE 1168, 352–357 (1989)

    ADS  Google Scholar 

  393. H. Ren, Y.H. Fan, S.T. Wu: Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals, Appl. Phys. Lett. 83, 1515–1517 (2003)

    Article  ADS  Google Scholar 

  394. H. Ren, S.T. Wu: Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index, Appl. Phys. Lett. 81, 3537–3539 (2002)

    Article  ADS  Google Scholar 

  395. H. Ren, S.T. Wu: Tunable electronic lens using a gradient polymer network liquid crystal, Appl. Phys. Lett. 82, 22–24 (2003)

    Article  ADS  Google Scholar 

  396. V.V. Presnyakov, K.E. Asatryan, T.V. Galstian, A. Tork: Polymer-stabilized liquid crystal for tunable microlens applications, Opt. Express 10, 865–870 (2002)

    ADS  Google Scholar 

  397. W. Helfrich, W.G. Schneider: Recombination radiation in anthracene crystals, Phys. Rev. Lett. 14, 229 (1965)

    Article  ADS  Google Scholar 

  398. M. Kawabe, K. Masuda, S. Nambu: Electroluminescence of green light region in doped anthracene, Jpn. J. Appl. Phys. 10, 527 (1971)

    Article  ADS  Google Scholar 

  399. C. Adachi, S. Tokito, S. Saito: Electroluminescence in organic films with three-layer structure, Jpn. J. Appl. Phys. 27, L269 (1988)

    Article  ADS  Google Scholar 

  400. C.W. Tang, S.A. van Slyke: Organic electroluminescent diodes, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  401. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackey, R.H. Friend, P.L. Burns, A.B. Holmes: Light-emitting-diodes based on conjugated polymers, Nature 347, 539 (1990)

    Article  ADS  Google Scholar 

  402. D. Braun, A.J. Heeger: Visible-light emission from semiconducting polymer diodes, Appl. Phys. Lett. 58, 1982 (1991)

    Article  ADS  Google Scholar 

  403. N.C. Greenham, S.C. Moratti, D.C.C. Bradley, R.H. Friend, A.B. Holmes: Efficient light-emitting-diodes based on polymers with high electron-affinities, Nature 365, 628 (1993)

    Article  ADS  Google Scholar 

  404. L.S. Swanson, J. Shinar, Y.W. Ding, T.J. Barton: Photoluminescence, electroluminescence and optically detected magnetic resonance study of 2,5-dialkoxy derivatives of poly(p-phenylene-acetylene) (PPA), PPA-based light emitting diodes, Synth. Met. 55–57, 1–6 (1993)

    Article  Google Scholar 

  405. M. Remmers, D. Neher, J. Grüner, R.H. Friend, G.H. Gelinck, J.M. Warman, C. Quattrocchi, D.A. dos Santos, J.-L. Brédas: The optical, electronic, and electroluminescent properties of novel poly(p-phenylene)-related polymers, Macromolecules 29, 7432 (1996)

    Article  ADS  Google Scholar 

  406. M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W.D. Chen, V.Y. Lee, J.C. Schott, R.D. Miller: Thermally stable blue-light-emitting copolymers of poly(alkylfluorene), Macromolecules 31, 1099 (1998)

    Article  ADS  Google Scholar 

  407. M.M. Grell, D.D.C. Bradley, M. Inbasekaran, E.P. Woo: A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence, Adv. Mater. 9, 798 (1997)

    Article  Google Scholar 

  408. Y. Ohmori, M. Uchida, K. Muro, K. Yoshino: Blue electroluminescent diodes utilizing poly(alkylfluorene), Jpn. J. Appl. Phys. 30, 1941 (1991)

    Article  ADS  Google Scholar 

  409. G. Grem, G. Leising: Electroluminescence of wide-bandgap chemically tunable cyclic conjugated polymers, Synth. Met. 55–57, 4105 (1993)

    Article  Google Scholar 

  410. U. Scherf, K. Müllen: Polyarylenes and poly(arylenevinylenes) a soluble ladder polymer via bridging of functionalized poly(para-phenylene)-precursors, Makromol. Chem. Rapid Commun. 12, 489 (1991)

    Article  Google Scholar 

  411. V. Cimrovà, D. Neher, M. Remmers: Blue light-emitting devices based on novel polymer blends, Adv. Mater. 10, 676 (1998)

    Article  Google Scholar 

  412. G. Yu, H. Nishino, A.J. Heeger, T.-A. Chen, R.D. Rieke: Enhanced electroluminescence from semiconducting polymer blends, Synth. Met. 72, 249 (1995)

    Article  Google Scholar 

  413. I.-N. Kang, D.-H. Hwang, H.-K. Shim, T. Zyung, J.-J. Kim: Highly improved quantum efficiency in blend polymer LEDs, Macromolecules 29, 165 (1996)

    Article  ADS  Google Scholar 

  414. Y. Ohmori, M. Uchida, K. Muro, K. Yoshino: Effects of alkyl chain length and carrier confinement layer on characteristics of poly(3-alkylthiophene) electroluminescent diodes, Solid State Commun. 80, 605 (1991)

    Article  ADS  Google Scholar 

  415. D.D. Gebler, Y.Z. Wang, J.W. Blatchford, S.W. Jessen, L.B. Lin, T.L. Gustafson, H.L. Wang, T.M. Swager, A.G. MacDiarmid, A.J. Epstein: Blue electroluminescent devices based on soluble poly(p-pyridine), J. Appl. Phys. 78, 4264 (1995)

    Article  ADS  Google Scholar 

  416. Y. Shirota: Organic light-emitting diodes using novel charge-transport materials, Proc. SPIE 186, 3148 (1997)

    ADS  Google Scholar 

  417. J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama: Bright red-emitting organic electroluminescent devices having an europium complex as an emitter, Appl. Phys. Lett. 65, 2124 (1994)

    Article  ADS  Google Scholar 

  418. M.A. Abkowitz, D.M. Pai: Comparison of the drift mobility measured under transient and steady-state conditions in a prototypical hopping system, Philos. Mag. B 53, 193 (1986)

    Article  Google Scholar 

  419. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai: Multilayered organic electroluminscent devices using a novel starburst molecule 4,4′,4′′-tris(3-methylphenylphenylamine)triphenylamine, as a hole transport layer, Appl. Phys. Lett. 65, 807 (1994)

    Article  ADS  Google Scholar 

  420. N. Johansson, D.A. dos Santos, S. Guo, J. Cornil, M. Fahlman, J. Salbeck, H. Schenck, H. Arwin, J.L. Brédas, W.R. Salanek: Electronic structure and optical properties of electroluminescent spiro-type molecules, J. Chem. Phys. 107, 2542 (1997)

    Article  ADS  Google Scholar 

  421. S.A. van Slyke, P.S. Bryan, C.W. Tang: Inorganic and Organic Electroluminescence (W&T Verlag, Berlin 1996) p. 195

    Google Scholar 

  422. V. Bulovic, A. Shoustikow, M.A. Baldo, E. Bose, V.G. Kozlov, M.E. Thompson, S.R. Forrest: Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts, Chem. Phys. Lett. 287, 455 (1998)

    Article  ADS  Google Scholar 

  423. J. Kido: Recent advances in organic electroluminescent devices, Bull. Electrochem. 10, 1 (1994)

    Google Scholar 

  424. J. Shi, C.W. Tang: Doped organic electroluminescent devices with improved stability, Appl. Phys. Lett. 70, 1665 (1997)

    Article  ADS  Google Scholar 

  425. S.F. Lim, L. Ke, W. Wang, S.J. Chua: Correlation between dark spot growth and pinhole size in organic light-emitting diodes, Appl. Phys. Lett. 78, 2116 (2001)

    Article  ADS  Google Scholar 

  426. L.J. Rothberg, M. Yan, F. Papadimitrikapoulos, M.E. Galvin, E.W. Kwock, T.M. Miller: Photophysics of phenylenevinylene polymers, Synth. Met. 80, 41 (1996)

    Article  Google Scholar 

  427. B.H. Cumpston, K.F. Jensen: Photo-oxidation of polymers used in electroluminescent devices, Synth. Met. 73, 195–199 (1995)

    Article  Google Scholar 

  428. M. Yan, L.J. Rothberg, F. Papadimitrikapoulos, M.E. Galvin, T.M. Miller: Defect quenching of conjugated polymer luminescence, Phys. Rev. Lett. 73, 744 (1994)

    Article  ADS  Google Scholar 

  429. J.C. Scott, J.H. Kaufman, P.J. Brock, R. DiPietro, J. Salem, J.A. Goitia: Degradation and failure of MEH-PPV light-emitting diodes, J. Appl. Phys. 79, 2745 (1996)

    Article  ADS  Google Scholar 

  430. S.A. van Slyke, C.H. Chen, C.W. Tang: Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 69, 2160 (1996)

    Article  ADS  Google Scholar 

  431. A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, K. Nassau: Optically induced refractive index inhomogeneities in LiNbO_3 and LiTaO_3, Appl. Phys. Lett. 9, 72 (1966)

    Article  ADS  Google Scholar 

  432. F.S. Chen, J.T. LaMacchia, D.B. Fraser: Holographic storage in lithium niobate, Appl. Phys. Lett. 13, 223 (1968)

    Article  ADS  Google Scholar 

  433. D.L. Staebler, W.J. Burke, W. Phillips, J.J. Amodei: Multiple storage and erasure of fixed holograms in Fe-doped LiNbO_3, Appl. Phys. Lett. 26, 182 (1975)

    Article  ADS  Google Scholar 

  434. R. Orlowski, E. Krätzig: Holographic method for the determination of photo-induced electron and hole transport in electrooptic crystals, Solid State Commun. 27, 1351 (1978)

    Article  ADS  Google Scholar 

  435. G.E. Peterson, A.M. Glass, T.J. Negran: Control of the susceptibility of lithium niobate to laser-induced refractive index change, Appl. Phys. Lett. 19, 130 (1971)

    Article  ADS  Google Scholar 

  436. J.J. Amodei, W. Phillips, D.L. Staebler: Improved electrooptic materials and fixing techniques for holographic recording, Appl. Opt. 11, 390 (1972)

    Article  ADS  Google Scholar 

  437. P. Günter, J.-P. Huignard (Eds.): Photorefractive Materials and Their Applications I, Top. Appl. Phys., Vol. 61 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  438. P. Boffi, D. Piccinin, M.C. Ubaldi: Infrared Holography for Optical Communications, Topics in Applied Physics, Vol. 86 (Springer, Berlin, Heidelberg 2003)

    Book  Google Scholar 

  439. H.J. Coufal, D. Psaltis, G. Sincerbox (Eds.): Holographic Data Storage (Springer, Berlin, Heidelberg 2000)

    MATH  Google Scholar 

  440. A.M. Glass, D. von der Linde, T.J. Negran: High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO_3, Appl. Phys. Lett. 25, 233 (1974)

    Article  ADS  Google Scholar 

  441. K. Buse: Thermal gratings and pyroelectrically produced charge redistribution in BaTiO_3 and KNbO_3, J. Opt. Soc. Am. B 10, 1266 (1993)

    Article  ADS  Google Scholar 

  442. N.V. Kukhtarev, V.B. Markov, S.G. Odoulov, M.S. Soskin, V.L. Vinetskii: Holographic storage in electrooptic crystals, Ferroelectrics 22, 949 (1979)

    Article  Google Scholar 

  443. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber: Photorefractive centers in LiNbO_3, studied by optical-, Mössbauer- and EPR-methods, Appl. Phys. 12, 355 (1977)

    Article  ADS  Google Scholar 

  444. G.C. Valley: Simultaneous electron/hole transport in photorefractive materials, J. Appl. Phys. 59, 3363 (1986)

    Article  ADS  Google Scholar 

  445. F.P. Strohkendl, J.M.C. Jonathan, R.W. Hellwarth: Hole–electron competition in photorefractive gratings, Opt. Lett. 11, 312 (1986)

    Article  ADS  Google Scholar 

  446. D.L. Staebler, W. Phillips: Hologram storage in photochromic LiNbO_3, Appl. Phys. Lett. 24, 268 (1974)

    Article  ADS  Google Scholar 

  447. G.A. Brost, R.A. Motes, J.R. Rotgé: Intensity-dependent absorption and photorefractive effects in barium titanate, J. Opt. Soc. Am. B 5, 1879 (1988)

    Article  ADS  Google Scholar 

  448. K. Buse, E. Krätzig: Three-valence charge-transport model for explanation of the photorefractive effect, Appl. Phys. B 61, 27 (1995)

    Article  ADS  Google Scholar 

  449. L. Holtmann: A model for the nonlinear photoconductivity of BaTiO_3, Phys. Status Solidi (a) 113, K89 (1989)

    Article  ADS  Google Scholar 

  450. F. Jermann, J. Otten: The light-induced charge transport in LiNbO_3:Fe at high light intensities, J. Opt. Soc. Am. B 10, 2085 (1993)

    Article  ADS  Google Scholar 

  451. I. Nee, M. Müller, K. Buse, E. Krätzig: Role of iron in lithium-niobate crystals for the dark storage time of holograms, J. Appl. Phys. 88, 4282 (2000)

    Article  ADS  Google Scholar 

  452. Y.P. Yang, I. Nee, K. Buse, D. Psaltis: Ionic and electronic dark decay of holograms in LiNbO_3 crystals, Appl. Phys. Lett. 78, 4076 (2001)

    Article  ADS  Google Scholar 

  453. K. Buse: Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods, Appl. Phys. B 64, 273 (1997)

    Article  ADS  Google Scholar 

  454. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Krätzig: Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56, 1225 (1997)

    Article  ADS  Google Scholar 

  455. R. Magnusson, T.K. Gaylord: Laser scattering induced holograms in lithium niobate, Appl. Opt. 13, 1545 (1974)

    Article  Google Scholar 

  456. J.F. Nye: Physical Properties of Crystals (Oxford Univ. Press, London 1979)

    Google Scholar 

  457. R. Sommerfeldt, L. Holtmann, E. Krätzig, B.C. Grabmaier: Influence of Mg doping and composition on the light-induced charge transport in LiNbO_3, Phys. Status Solidi (a) 106, 89 (1988)

    Article  ADS  Google Scholar 

  458. K. Buse, A. Adibi, D. Psaltis: Nonvolatile holographic storage in doubly doped lithium niobate crystals, Nature 393, 665 (1998)

    Article  ADS  Google Scholar 

  459. K. Buse: Light-induced charge transport processes in photorefractive crystals II: Materials, Appl. Phys. B 64, 391 (1997)

    Article  ADS  Google Scholar 

  460. D. Dirksen, F. Matthes, S. Riehemann, G. von Bally: Phase shifting holographic double exposure interferometry with fast photorefractive crystals, Opt. Commun. 134, 310 (1997)

    Article  ADS  Google Scholar 

  461. F. Mersch, K. Buse, W. Sauf, H. Hesse, E. Krätzig: Growth and characterization of undoped and doped Bi12TiO20 crystals, Phys. Status Solidi (a) 140, 273 (1993)

    Article  ADS  Google Scholar 

  462. K. Buse, A. Gerwens, S. Wevering, E. Krätzig: Charge transport parameters of photorefractive strontium-barium niobate crystals doped with cerium, J. Opt. Soc. Am. B 15, 1674 (1998)

    Article  ADS  Google Scholar 

  463. L.H. Acioli, M. Ulman, E.P. Ippen, J.G. Fujimoto, H. Kong, B.S. Chen, M. Cronin-Golomb: Femtosecond temporal encoding in barium titanate, Opt. Lett. 16, 1984 (1991)

    Article  ADS  Google Scholar 

  464. Q.N. Wang, D.D. Nolte, M.R. Melloch: Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells, Appl. Phys. Lett. 59, 256 (1991)

    Article  ADS  Google Scholar 

  465. Q.N. Wang, R.M. Brubaker, D.D. Nolte: Photorefractive phase-shift induced by hot-electron transport – multiple-quantum-well structures, J. Opt. Soc. Am. B 11, 1773 (1994)

    Article  ADS  Google Scholar 

  466. J.J. Amodei, D.L. Staebler: Holographic pattern fixing in electrooptic crystals, Appl. Phys. Lett. 18, 540 (1971)

    Article  ADS  Google Scholar 

  467. H. Vormann, G. Weber, S. Kapphan, E. Krätzig: Hydrogen as origin of thermal fixing in LiNbO_3:Fe, Solid State Commun. 40, 543 (1981)

    Article  ADS  Google Scholar 

  468. F. Micheron, G. Bismuth: Electrical control of fixation and erasure of holographic patterns in ferroelectric materials, Appl. Phys. Lett. 20, 79 (1972)

    Article  ADS  Google Scholar 

  469. J. Ma, T. Chang, J. Hong, R. Neurgaonkar: Electrical fixing of 1000 angle-multiplexed holograms in SBN:75, Opt. Lett. 22, 1116 (1997)

    Article  ADS  Google Scholar 

  470. D. von der Linde, A.M. Glass, K.F. Rodgers: Multiphoton photorefractive processes for optical storage in LiNbO_3, Appl. Phys. Lett. 25, 155 (1974)

    Article  ADS  Google Scholar 

  471. H. Vormann, E. Krätzig: Two step excitation in LiTaO_3:Fe for optical data storage, Solid State Commun. 49, 843 (1984)

    Article  ADS  Google Scholar 

  472. K. Buse, L. Holtmann, E. Krätzig: Activation of BaTiO_3 for infrared holographic recording, Opt. Commun. 85, 183 (1991)

    Article  ADS  Google Scholar 

  473. M.P. Petrov, S.I. Stepanov, A.A. Kamshilin: Holographic storage of information and peculiarities of light-diffraction in birefringent electrooptic crystals, Opt. Laser Technol. 11, 149 (1979)

    Article  ADS  Google Scholar 

  474. H.C. Külich: Reconstructing volume holograms without image field losses, Appl. Opt. 30, 2850 (1991)

    Article  ADS  Google Scholar 

  475. E. Chuang, D. Psaltis: Storage of 1000 holograms with use of a dual-wavelength method, Appl. Opt. 36, 8445 (1997)

    Article  ADS  Google Scholar 

  476. S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, Y. Yacoby: Spatial frequency mixing in lithium niobate, Opt. Commun. 84, 251 (1991)

    Article  ADS  Google Scholar 

  477. S. Fries: Spatial frequency mixing in electrooptic crystals – application to nondestructive read-out of optically erasable volume holograms, Appl. Phys. A 55, 104 (1992)

    Article  ADS  Google Scholar 

  478. J.J. Amodei, D.L. Staebler: Coupled-wave analysis of holographic storage in LiNbO_3, J. Appl. Phys. 43, 1042 (1972)

    Article  ADS  Google Scholar 

  479. A. Yariv, D. Pepper: Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing, Opt. Lett. 1, 16 (1977)

    Article  ADS  Google Scholar 

  480. S.I. Stepanov, M.P. Petrov, A.A. Kamshilin: Optical diffraction with polarization-plane rotation in a volume hologram in an electrooptic crystal, Sov. Tech. Phys. Lett. 3, 345 (1977)

    Google Scholar 

  481. B.I. Sturmann, S.G. Odoulov, M.Y. Goulkov: Parametric four-wave processes in photorefractive crystals, Phys. Rep. 275, 198 (1996)

    Article  ADS  Google Scholar 

  482. M. Röwe, J. Neumann, E. Krätzig, S.G. Odoulov: Holographic scattering in photorefractive potassium tantalate-niobate crystals, Opt. Commun. 170, 121 (1999)

    Article  Google Scholar 

  483. S.G. Odoulov, K. Belabaev, I. Kiseleva: Degenerate stimulated parametric scattering in LiTaO_3:Cu, Opt. Lett. 10, 31 (1985)

    Article  ADS  Google Scholar 

  484. K.G. Belabaev, I.N. Kiseleva, V.V. Obukhovskil, S.G. Odoulov, R.A. Taratuta: New parametric holographic scattering of light in lithium tantalite crystals, Sov. Phys. Solid State 28, 321 (1986)

    Google Scholar 

  485. D. Temple, C. Warde: Anisotropic scattering in photorefractive crystals, J. Opt. Soc. Am. B 3, 337 (1986)

    Article  ADS  Google Scholar 

  486. R. Rupp, F. Drees: Light-induced scattering in photorefractive crystals, Appl. Phys. B 39, 223 (1986)

    Article  ADS  Google Scholar 

  487. M. Ewbank, P. Yeh, J. Feinberg: Photorefractive conical diffraction in BaTiO_3, Opt. Commun. 59, 423 (1986)

    Article  ADS  Google Scholar 

  488. S.G. Odoulov: Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals, JETP Lett. 35, 10 (1982)

    ADS  Google Scholar 

  489. S.G. Odoulov: Anisotropic scattering in photorefractive crystals, J. Opt. Soc. Am. B 4, 1335 (1987)

    Article  ADS  Google Scholar 

  490. S. Schwalenberg, F. Rahe, E. Krätzig: Recording mechanisms of anisotropic holographic scattering cones in photorefractive crystals, Opt. Commun. 209, 467 (2002)

    Article  ADS  Google Scholar 

  491. U. van Olfen, R.A. Rupp, E. Krätzig, B.C. Grabmaier: A simple new method for the determination of the Li/Nb ratio of LiNbO_3 crystals, Ferroelectr. Lett. 10, 133 (1989)

    Article  Google Scholar 

  492. K. Bastwöste, S. Schwalenberg, C. Bäumer, E. Krätzig: Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering, Phys. Status Solidi (a) 199, R1 (2003)

    Article  Google Scholar 

  493. M.A. Ellaban, R.A. Rupp, M. Fally: Reconstruction of parasitic holograms to characterize photorefractive materials, Appl. Phys. B 72, 635 (2001)

    Article  ADS  Google Scholar 

  494. M. Goulkov, S.G. Odoulov, T. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, H. Hesse: Holographic light scattering in photorefractive crystals with local response, Phys. Rev. 65, 195111 (2002)

    Article  ADS  Google Scholar 

  495. B.I. Sturman: Low-frequency noise and photoinduced scattering in photorefractive crystals, Sov. Phys. JETP 73, 593 (1991)

    Google Scholar 

  496. B.I. Sturman, M. Goulkov, S.G. Odoulov: Phenomenological analysis of parametric scattering processes in photorefractive crystals, J. Opt. Soc. Am. B 13, 577 (1996)

    Article  ADS  Google Scholar 

  497. M. Goulkov, G. Jäkel, E. Krätzig, S.G. Odoulov, R. Schulz: Influence of different impurities on light-induced scattering in doped LiNbO_3 crystals, Opt. Mater. 4, 314 (1995)

    Article  Google Scholar 

  498. S.G. Odoulov: Vectorial interactions in photovoltaic media, Ferroelectrics 91, 213 (1989)

    Article  Google Scholar 

  499. M.Y. Goulkov, S.G. Odoulov, B.I. Sturman, A.I. Chernykh, E. Krätzig, G. Jäkel: Bright light dots caused by interference of parametric scattering processes in LiNbO_3 crystals, J. Opt. Soc. Am. B 13, 2602 (1996)

    Article  ADS  Google Scholar 

  500. A.D. Novikov, V.V. Obukhovsky, S.G. Odoulov, B.I. Sturman: Explosive instability and optical generation in photorefractive crystals, Sov. Phys. JETP Lett. 44, 538 (1987)

    ADS  Google Scholar 

  501. A.D. Novikov, V.V. Obukhovsky, S.G. Odoulov, B.I. Sturman: Mirrorless coherent oscillation due to six-beam vectorial mixing in photorefractive crystals, Opt. Lett. 12, 1017 (1988)

    Article  ADS  Google Scholar 

  502. V.V. Lemeshko, V.V. Obukhovsky: Autowaves of photoinduced light scattering, Sov. Tech. Phys. Lett. 11, 573 (1985)

    Google Scholar 

  503. T. Honda: Hexagonal pattern formation due to counterpropagation in KNbO_3, Opt. Lett. 18, 598 (1993)

    Article  ADS  Google Scholar 

  504. S.G. Odoulov, B. Sturman, E. Krätzig: Seeded and spontaneous light hexagons in LiNbO_3:Fe, Appl. Phys. B 70, 645 (2000)

    Article  ADS  Google Scholar 

  505. R.F. Kazarinov, R.A. Suris, B.I. Fuks: Thermal-current instability in compensated semiconductors, Sov. Phys. Semicond. 6, 500 (1972)

    Google Scholar 

  506. S.I. Stepanov, V.V. Kulikov, M.P. Petrov: Running holograms in photorefractive Bi12SiO20 crystals, Opt. Commun. 44, 19 (1982)

    Article  ADS  Google Scholar 

  507. J.P. Huignard, A. Marrakchi: Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals, Opt. Commun. 38, 249 (1981)

    Article  ADS  Google Scholar 

  508. P. Refregier, L. Solymar, K. Rajbenbach, J.P. Huignard: Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: Theory and experiments, J. Appl. Phys. 58, 45 (1985)

    Article  ADS  Google Scholar 

  509. L. Solymar, D.J. Webb, A. Grunnet-Jepsen: The Physics and Applications of Photorefractive Materials, Oxford Ser. Opt. Imaging Sci., Vol. 11 (Oxford University, Oxford 1996)

    Google Scholar 

  510. M.P. Petrov, V.V. Bryksin: Space charge waves in sillenites. In: Photorefractive Materials and Their Applications 2, ed. by P. Günter, J.-P. Huignard (Springer, Berlin, Heidelberg 2007) pp. 285–325, Chap. 9

    Chapter  Google Scholar 

  511. V.V. Bryksin, M.P. Petrov: Second harmonic generation and rectification of space-charge waves in photorefractive crystals, Phys. Solid State 44, 1869 (2002)

    Article  ADS  Google Scholar 

  512. V.V. Bryksin, P. Kleinert, M.P. Petrov: Theory of space-charge waves in semiconductors with negative differential conductivity, Phys. Solid State 45, 2044 (2003)

    Article  ADS  Google Scholar 

  513. M.P. Petrov, V.V. Bryksin, V.M. Petrov, S. Wevering, E. Krätzig: Study of the dispersion law of photorefractive waves in sillenites, Phys. Rev. A 60, 2413 (1999)

    Article  ADS  Google Scholar 

  514. M.P. Petrov, V.V. Bryksin, H. Vogt, F. Rahe, E. Krätzig: Overall rectification and second-harmonic generation of space charge waves, Phys. Rev. B 66, 085107 (2002)

    Article  ADS  Google Scholar 

  515. M.P. Petrov, A.P. Paugurt, V.V. Bryksin, S. Wevering, E. Krätzig: Spatial rectification of the electric field of space charge waves, Phys. Rev. Lett. 84, 5114 (2000)

    Article  ADS  Google Scholar 

  516. M.P. Petrov, V.V. Bryksin, S. Wevering, E. Krätzig: Nonlinear interaction and shattering of space charge waves in sillenites, Appl. Phys. B 73, 699 (2001)

    Article  ADS  Google Scholar 

  517. G.S. Trofimov, S.I. Stepanov: Nonstationary holographic currents in photorefractive crystals, Sov. Phys. Solid State 28, 1559 (1986)

    Google Scholar 

  518. M.P. Petrov, I.A. Sokolov, S.I. Stepanov, G.S. Trofimov: Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors, J. Appl. Phys. 68, 2216 (1990)

    Article  ADS  Google Scholar 

  519. S.I. Stepanov: Photo-electro-motive-force effect in semiconductors. In: Handbook of Advanced Electronic and Photonic Materials, Vol. II, ed. by H.S. Nalwa (Academic, San Diego 2000) p. 205

    Google Scholar 

  520. S. Sochava, K. Buse, E. Krätzig: Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO_3, Opt. Commun. 98, 265 (1993)

    Article  ADS  Google Scholar 

  521. S. Sochava, K. Buse, E. Krätzig: Characterization of photorefractive KNbO_3:Fe by non-steady-state photocurrent techniques, Opt. Commun. 105, 315 (1994)

    Article  ADS  Google Scholar 

  522. S.L. Sochava, K. Buse, E. Krätzig: Photoinduced hall-current measurements in photorefractive sillenites, Phys. Rev. B 51, 4684 (1995)

    Article  ADS  Google Scholar 

  523. S.I. Stepanov, I.A. Sokolov, G.S. Trofimov, V.I. Vlad, D. Popa, I. Apostol: Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr, Opt. Lett. 15, 1239 (1990)

    Article  ADS  Google Scholar 

  524. P. Delaye, A. Blouin, D. Drolet, L.A. deMontmorillon, G. Roosen, J.P. Monchalin: Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field, J. Opt. Soc. Am. B 14, 1723 (1997)

    Article  ADS  Google Scholar 

  525. S.I. Stepanov, P. Rodriguez, S. Trivedi, C.C. Wang: Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector, Appl. Phys. Lett. 84, 446 (2004)

    Article  ADS  Google Scholar 

  526. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan: Interaction between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962)

    Article  ADS  Google Scholar 

  527. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer: Quasi-phase-matched second harmonic generation: Tuning and tolerances, IEEE J. Quantum Electron. 28, 2632 (1992)

    Article  ADS  Google Scholar 

  528. M. Falk, K. Buse: Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals, Appl. Phys. B 81, 853 (2005)

    Article  ADS  Google Scholar 

  529. S. Gronenborn, B. Sturman, M. Falk, D. Haertle, K. Buse: Ultraslow shock waves of electron density in LiNbO_3 crystals, Phys. Rev. Lett. 101, 116601 (2008)

    Article  ADS  Google Scholar 

  530. I. Breunig, M. Falk, B. Knabe, R. Sowade, K. Buse, P. Rabiei, D.H. Jundt: Second harmonic generation of 2.6 W green light with thermoelectrically oxidized undoped congruent lithium niobate crystals below 100 °C, Appl. Phys. Lett. 91, 221110 (2007)

    Article  ADS  Google Scholar 

  531. M. Kösters, B. Sturman, P. Wehrheit, D. Haertle, K. Buse: Optical cleaning of lithium niobate crystals, Nat. Photonics 3, 510 (2009)

    Article  ADS  Google Scholar 

  532. D.A. Bryan, R. Gerson, H.E. Tomaschke: Increased optical-damage resistance in lithium niobate, Appl. Phys. Lett. 44, 847 (1984)

    Article  ADS  Google Scholar 

  533. Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda: Growth and characterization of off-congruent LiNbO_3 single-crystals grown by the double-crucible method, J. Cryst. Growth 128, 909 (1993)

    Article  ADS  Google Scholar 

  534. V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki: Nonlinear Optics and crystalline whispering gallery mode cavities, Phys. Rev. Lett. 92, 043903 (2004)

    Article  ADS  Google Scholar 

  535. A.A. Savchenkov, A.B. Matsko, D. Strekalov, V.S. Ilchenko, L. Maleki: Photorefractive damage in whispering gallery resonators, Opt. Commun. 272, 257 (2007)

    Article  ADS  Google Scholar 

  536. J.U. Fürst, D.V. Strekalov, D. Elser, M. Lassen, U.L. Andersen, C. Marquardt, G. Leuchs: Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator, Phys. Rev. Lett. 104, 153901 (2010)

    Article  ADS  Google Scholar 

  537. J.R. Schwesyg, M.C.C. Kajiyama, M. Falk, D.H. Jundt, K. Buse, M.M. Fejer: Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range, Appl. Phys. B 100, 109 (2010)

    Article  ADS  Google Scholar 

  538. J.R. Schwesyg, C.R. Phillips, K. Ioakeimidi, M.C.C. Kajiyama, M. Falk, D.H. Jundt, K. Buse, M.M. Fejer: Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals, Opt. Lett. 35, 1070 (2010)

    Article  Google Scholar 

  539. J. Feinberg: Self-pumped, continuous-wave phase conjugator using internal reflection, Opt. Lett. 7, 486 (1982)

    Article  ADS  Google Scholar 

  540. J. Feinberg, K.R. MacDonald: Phase-conjugate mirrors and resonators with photorefractive materials. In: Photorefractive Materials and Their Applications 2, Topics in Applied Physics, Vol. 62, ed. by P. Günter, J.-P. Huignard (Springer, Berlin, Heidelberg 1989) p. 151

    Chapter  Google Scholar 

  541. M. Segev, B. Crosignani, A. Yariv, B. Fischer: Spatial solitons in photorefractive media, Phys. Rev. Lett. 68, 923 (1992)

    Article  ADS  Google Scholar 

  542. M.D. Iturbe Castillo, P.A. Marquez Agullar, J.J. Sanchez-Modragon, S. Stepanov, V. Vysloukh: Spatial solitons in photorefractive Bi12SiO20 with drift mechanism of nonlinearity, Appl. Phys. Lett. 64, 408 (1994)

    Article  ADS  Google Scholar 

  543. V.E. Wood, P.J. Cressman, R.L. Holmann, C.M. Verber: Photorefractive effects in waveguides. In: Photorefractive Materials and Their Applications 2, Topics in Applied Physics, Vol. 62, ed. by P. Günter, J.-P. Huignard (Springer, Berlin, Heidelberg 1989) p. 45

    Chapter  Google Scholar 

  544. D. Kip, M. Wesner: Photorefractive waveguides. In: Photorefractive Materials and Their Applications I, Springer Ser. Opt. Sci., ed. by P. Günter, J.-P. Huignard (Springer, Berlin, Heidelberg 2006) p. 289

    Chapter  Google Scholar 

  545. C. Denz, M. Schwab, C. Weilnau (Eds.): Transverse-Pattern Formation in Photorefractive Optics, Springer Tracts in Modern Physics (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  546. C. Denz, P. Jander: Spatio-temporal instabilities and self-organization. In: Photorefractive Materials and Their Applications 1, Springer Ser. Opt. Sci., ed. by P. Günter, J.-P. Huignard (Springer, Berlin, Heidelberg 2006) p. 253

    Chapter  Google Scholar 

  547. R.A. Rupp, J. Hehmann, R. Matull, K. Ibel: Neutron diffraction from photoinduced gratings in a PMMA matrix, Phys. Rev. Lett. 64, 301 (1990)

    Article  ADS  Google Scholar 

  548. M. Fally, C. Pruner, R.A. Rupp, G. Krexner: Neutron physics with photorefractive materials. In: Photorefractive Materials and Their Applications 3, Springer Ser. Opt. Sci., ed. by P. Günter, J.-P. Huignard (Springer, Berlin, Heidelberg 2006) p. 321

    Google Scholar 

  549. P. Günter, J.-P. Huignard (Eds.): Photorefractive Materials and Their Applications 1, 2, 3, Springer Ser. Opt. Sci. (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  550. R.A. Paquin: Properties of metals. In: Handbook of Optics, Devices, Measurements, and Properties, Vol. II, ed. by M. Bass (McGraw-Hill, New York 1994) pp. 35.1–35.78

    Google Scholar 

  551. R.A. Paquin: Materials for optical systems and metal mirrors. In: Handbook of Optomechanical Engineering, ed. by A. Ahmad (CRC, Boca Raton 1997) pp. 69–110

    Google Scholar 

  552. M.A. Ealey, R.A. Paquin, T.B. Parsonage (Eds.): Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67 (SPIE, Bellingham 1997)

    Google Scholar 

  553. R.A. Paquin: Metal mirrors. In: Handbook of Optomechanical Engineering, ed. by A. Ahmad (CRC, Boca Raton 1996) p. 92

    Google Scholar 

  554. I.K. Lokshin: Heat treatment to reduce internal stresses in beryllium, Metal Sci. Heat Treat. 426, 426 (1970)

    Article  Google Scholar 

  555. R.A. Paquin: Advanced materials: An overview. In: Advanced materials for optics and precision structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by M.A. Ealey, R.A. Paquin, T.B. Parsonage (SPIE, Bellingham 1997) p. 10

    Google Scholar 

  556. R.G. Ohl, M.P. Barthelmy, S.W. Zewari, R.W. Toland, J.C. McMann, D.F. Puckett, J.G. Hagopian, J.E. Hylan, J.E. Mentzell, R.G. Mink, L.M. Sparr, M.A. Greenhouse, J.W. Mac Kenty: Cryogenic optical systems and instruments IX, comparison of stress relief procedures for cryogenic aluminum mirrors, Proc. SPIE 4822, 51 (2002)

    Article  Google Scholar 

  557. H.Y. Hunsicker: The metallurgy of heat treatment. In: Aluminum 1: Properties, Physical Metallurgy and Phase Diagrams, ed. by J.E. Hatch (American Society for Metals, Metals Park 1967)

    Google Scholar 

  558. J.B.C. Fuller Jr., P. Forney, C.M. Klug: Design and fabrication of aluminum mirrors for a large aperture precision collimator operating at cryogenic temperatures, Los Alamos Conference on Optics ʼ81, Proc. SPIE 288, 104 (1981)

    ADS  Google Scholar 

  559. D. Vukobratovich, K. Don, R. Sumner: Improved cryogenic aluminum mirrors, Cryogenic Optical Systems and Instruments VIII, Proc. SPIE 3435, 9–18 (1998)

    Article  ADS  Google Scholar 

  560. C.A. Swenson: HIP beryllium: Thermal expansivity from 4 to 300 K and heat capacity from 1 to 108 K, J. Appl. Phys. 70, 3046 (1991)

    Article  ADS  Google Scholar 

  561. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai: Thermal Expansion, Metallic Elements and Alloys, Thermophys. Prop. Matter, Vol. 12 (IFI/Plenum, New York 1977) p. 23

    Google Scholar 

  562. R.A. Paquin: Hot isostatic pressed beryllium for large optics, Opt. Eng. 25, 1003 (1986)

    Google Scholar 

  563. D. Saxton, T. Parsonage: Advances in near net shape beryllium manufacturing technologies, Optical design, materials, fabrication, and maintenance, Proc. SPIE 4003, 80 (2000)

    Article  ADS  Google Scholar 

  564. M. Cayrel, R.A. Paquin, T.B. Parsonage, S. Stanghellini, K.H. Dost: Use of beryllium for the VLT secondary mirror, Advanced Materials for Optics and Precision Structures, Proc. SPIE 2857, 86 (1996)

    Article  ADS  Google Scholar 

  565. D.R. Coulter, S.A. Macenka, M.T. Stier, R.A. Paquin: ITTT: A state-of-the-art ultra-lightweight all-beryllium telescope. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by M.A. Ealey, R.A. Paquin, T.B. Parsonage (SPIE, Bellingham 1997) p. 277

    Google Scholar 

  566. G. Gould: Method and means for making a beryllium mirror, US Patent 4492669 (1985)

    Google Scholar 

  567. R.A. Paquin: New technology for beryllium mirror production, Current Developments in Optical Engineering and Commercial Optics, Proc. SPIE 1168, 83 (1989)

    ADS  Google Scholar 

  568. T. Parsonage, J. Benoit: Advances in beryllium and AlBeMet® optical materials, Optomechanical Design And Engineering 2002, Proc. SPIE 4771, 222 (2002)

    Article  ADS  Google Scholar 

  569. R.A. Paquin, D.R. Coulter, D.D. Norris, A.C. Augason, M.T. Stier, M. Cayrel, T. Parsonage: New fabrication processes for dimensionally stable beryllium mirrors, Specification, Production, and Testing of Optical Components and Systems, Proc. SPIE 2775, 480 (1996)

    Article  ADS  Google Scholar 

  570. T.B. Parsonage: Development of aluminum beryllium for structural applications. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T.B. Parsonage, M.A. Ealey, R.A. Paquin (SPIE, Bellingham 1997) p. 236

    Google Scholar 

  571. Website for Brush Beryllium products: http://materion.com/Businesses/BrushBerylliumandComposites.aspx

  572. M.R. Howells, R.A. Paquin: Optical substrate materials for synchrotron radiation beam lines. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T.B. Parsonage, M.A. Ealey, R.A. Paquin (SPIE, Bellingham 1997) p. 339

    Google Scholar 

  573. R. Valdiviez, D. Schrage, F. Martinez, W. Clark: The use of dispersion strengthened copper in accelerator designs, Proc. XX Int. Linac Conf., Monterey (2000) p. 956

    Google Scholar 

  574. B.S. Lement, B.L. Averback, M. Cohen: The dimensional behavior of Invar, Trans. Am Soc. Met. 43, 1072 (1951)

    Google Scholar 

  575. W.J. Spawr: Standard industrial polishing of high energy laser optics, NBS Spec. Publ. 435, 10–12 (1975)

    Google Scholar 

  576. P.A. Temple, D.K. Burge, J.M. Bennett: Optical properties of mirrors prepared by ultraclean dc sputter deposition, NBS Spec. Publ. 462, 195–202 (1976)

    Google Scholar 

  577. G.E. Carver, B.O. Seraphin: CVD molybdenum films for high power laser mirrors. In: Laser Induced Damage in Optical Materials, ed. by H.E. Bennett, A.J. Glass, A.H. Guenther, B.E. Newnam (NBS, Boulder 1979) pp. 287–292

    Google Scholar 

  578. H. Okamoto, M. Matsusue, K. Kitazima, K. Yoshida, Y. Ichikawa, M. Yamanaka, T. Yamanaka, Y. Tsunawaki: Laser-induced Mo mirror damage for high power CO_2 laser. In: Laser Induced Damage in Optical Materials, ed. by H.E. Bennett, A.H. Guenther, D. Milam, B.E. Newnam (NBS, Boulder 1985) pp. 248–260

    Google Scholar 

  579. M. Yamashita, S. Hara, H. Matsunaga: Ultrafine polishing of tungsten and molybdenum mirrors for CO_2 laser. In: Laser-Damage in Optical Materials: Collected Papers, 1969-1998, Vol. CD08 (SPIE, Bellingham 1999)

    Google Scholar 

  580. D.L. Hibbard: Electroless nickel for optical applications. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T.B. Parsonage, M.A. Ealey, R.A. Paquin (SPIE, Bellingham 1997) p. 179

    Google Scholar 

  581. K. Parker, H. Shah: Residual stresses in electroless nickel plating, Plating 58, 230 (1971)

    Google Scholar 

  582. K. Parker: Internal stress measurements of electroless nickel coatings by the rigid strip method. In: Testing of Metallic and Inorganic Coatings, Vol. STP 947, ed. by W.B. Hardig, G.D. di Ban (American Society for Testing and Materials, Philadelphia 1987) p. 111

    Chapter  Google Scholar 

  583. D. Vukobratovich, A. Gerzoff, M.K. Cho: Thermooptic analysis of bi-metallic mirrors, Optomechanical Design and Precision Instruments, Proc. SPIE 3132, 12–23 (1997)

    Article  ADS  Google Scholar 

  584. C.J. Shih, A. Ezis: Application of hot-pressed silicon carbide to large high-precision optical structures, Silicon Carbide Materials for Optics and Precision Structures, Proc. SPIE 2543, 24 (1995)

    Article  ADS  Google Scholar 

  585. J.S. Goela, M.A. Pickering: Optics applications of chemical vapor deposited β-SiC. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T.B. Parsonage, M.A. Ealey, R.A. Paquin (SPIE, Bellingham 1997) p. 71

    Google Scholar 

  586. V. Rehn, J.L. Stanford, A.D. Behr, V.O. Jones, W.J. Choyke: Total optical integrated scatter in the vacuum ultraviolet: Polished CVD SiC, Appl. Opt. 16, 111 (1977)

    Article  Google Scholar 

  587. V. Rehn, W.J. Choyke: Total optical integrated scatter in the vacuum ultraviolet: Polished CVD SiC, Nucl. Instrum. Methods 117, 173 (1980)

    Article  Google Scholar 

  588. E. Sein, F. Safa, D. Castel, P. Deny: Silicon carbide, a sound solution for space optics, Proc. 52 Int. Astronaut. Congr. Toulouse (2001), paper IAF-01-I.1.06

    Google Scholar 

  589. M.A. Ealey, J.A. Wellman, G. Weaver: CERAFORM SiC: Roadmap to 2 meters and 2 kg/m2 areal density. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T.B. Parsonage, M.A. Ealey, R.A. Paquin (SPIE, Bellingham 1997) p. 53

    Google Scholar 

  590. E. Tobin, M. Magida, S. Kishner, M. Krim: Design, fabrication, and test of a meter-class reaction bonded SiC mirror blank, Silicon Carbide Materials for Optics and Precision Structures, Proc. SPIE 2543, 12 (1995)

    Article  ADS  Google Scholar 

  591. R.A. Paquin, M.B. Magida: Low scatter surfaces on silicon carbide, Laser Induced Damage in Optical Materials: 1989, NIST Spec. Publ. 801, 256 (1990)

    Google Scholar 

  592. M. Krödel, G.S. Kutter, M. Deyerler, N. Pailer: Short carbon-fiber reinforced ceramic – Cesic® – for optomechanical applications, Optomechanical Design And Engineering 2002, Proc. SPIE 4771, 230 (2002)

    Article  ADS  Google Scholar 

  593. R. Plummer, D. Bray: Guidelines for design of SuperSiC® silicon carbide mirror substrates, precision components, Optomechanical Design and Engineering 2002, Proc. SPIE 4771, 265 (2002)

    Article  ADS  Google Scholar 

  594. F. Anthony, A. Khounsary, D. McCarter, F. Krasnicki, M. Tangedahl: McCarter superfinish, an update, Proc. SPIE 4145, 37–44 (2001)

    Article  ADS  Google Scholar 

  595. F.M. Anthony, A.K. Hopkins: Actively cooled silicon mirrors, Proc. SPIE 297, 196–304 (1981)

    ADS  Google Scholar 

  596. F.M. Anthony, D. McCarter, D. Tangedahl, M. Wright: Frit bonding, a way to larger and more complex silicon components, Proc. SPIE 5179, 194–202 (2003)

    Article  ADS  Google Scholar 

  597. T.W. Tonnessen, S.E. Fisher, F.M. Anthony: High heat flux mirror design for an undulator beam line, Proc. SPIE 1997, 340–353 (1993)

    Article  ADS  Google Scholar 

  598. W.H. Lowery, F.M. Anthony: Cutting costs with planform bonding, Photonics Spectra, 1992, 159–162 (1992)

    Google Scholar 

  599. F.M. Anthony, D. McCarter, D. Tangedahl, D.A. Content: A cryostable lightweight frit bonded silicon mirror, Proc. SPIE 4822, 22–34 (2002)

    Google Scholar 

  600. V.T. Bly, M.D. Nowak, D.O. Moore: Lightweight instrument mirrors from single-crystal silicon, Proc. SPIE 6265, 6265 (2006)

    ADS  Google Scholar 

  601. S. Musikant: Optical Materials (Dekker, New York 1985) p. 1985

    Google Scholar 

  602. Hoya Optical Glass Catalog, available online at www.hoyaoptics.com

  603. Ohara Optical Glass Catalog (Ohara, Brandsburg 1995)

    Google Scholar 

  604. Schott Optical Glass Catalog (Schott, Mainz 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Brinkmann , Joseph Hayden , Martin Letz , Steffen Reichel , Carol Click , Wolfgang Mannstadt , Bianca Schreder , Silke Wolff , Simone Ritter , Mark J. Davis , Thomas E. Bauer , Hongwen Ren , Yun-Hsing Fan , Yvonne Menke , Shin-Tson Wu , Klaus Bonrad , Eckhard Krätzig , Karsten Buse or Roger A. Paquin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this chapter

Cite this chapter

Brinkmann, M. et al. (2012). Optical Materials and Their Properties. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19409-2_5

Download citation

Publish with us

Policies and ethics