Skip to main content

Cross-Species Candidate Gene Prioritization with MerKator

  • Chapter
  • 2563 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 345))

Abstract

In modern biology, the use of high-throughput technologies allows researchers and practicians to quickly and efficiently screen the genome in order to identify the genetic factors of a given disorder.However these techniques are often generating large lists of candidate genes among which only one or a few are really associated to the biological process of interest. Since the individual validation of all these candidate genes is often too costly and time consuming, only the most promising genes are experimentally assayed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.C., De Moor, B., Marynen, P., Hassan, B., Carmeliet, P., Moreau, Y.: Gene prioritization through genomic data fusion. Nature Biotechnology 24, 537–544 (2006)

    Article  Google Scholar 

  2. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High Perf. Optimization, pp. 197–232. Kluwer Academic Publishers, New York (2000)

    Google Scholar 

  3. Chen, J., Xu, H., Aronow, B.J., Jegga, A.G.: Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 8, 392 (2007)

    Article  Google Scholar 

  4. De Bie, T., Tranchevent, L.C., Van Oeffelen, L., Moreau, Y.: Kernel-based data fusion for gene prioritization. Bioinformatics 23, i125–i123 (2007)

    Google Scholar 

  5. Hutz, J.E., Kraja, A.T., McLeod, H.L., Province, M.A.: CANDID: a flexible method for prioritizing candidate genes for complex human traits. Genetic Epidemiology 32, 779–790 (2008)

    Article  Google Scholar 

  6. Liu, Q., Crammer, K., Pereira, F.C.N., Roos, D.S.: Reranking candidate gene models with cross-species comparison for improved gene prediction. BMC Bioinformatics 9, 433 (2008)

    Article  Google Scholar 

  7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  8. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Dicuccio, M., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y., Landsman, D., Lipman, D.J., Lu, Z., Madden, T.L., Madej, T., Maglott, D.R., Marchler-Bauer, A., Miller, V., Mizrachi, I., Ostell, J., Panchenko, A., Pruitt, K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Shumway, M., Sirotkin, K., Slotta, D., Souvorov, A., Starchenko, G., Tatusova, T.A., Wagner, L., Wang, Y., Wilbur, W.J., Yaschenko, E., Ye, J.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 38, D5–D16 (2010)

    Article  Google Scholar 

  9. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13, 1443–1471 (2001)

    Article  MATH  Google Scholar 

  10. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  11. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recognition Letter 20, 1191–1199 (1999)

    Article  Google Scholar 

  12. Tranchevent, L., Barriot, R., Yu, S., Van Vooren, S., Van Loo, P., Coessens, B., De Moor, B., Aerts, S., Moreau, Y.: ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Research 36, W377–W384 (2008)

    Google Scholar 

  13. Tranchevent, L.C., Capdevila, F.B., Nitsch, D., De Moor, B., Causmaecker, P., Moreau, Y.: A guide to web tools to prioritize candidate genes. Briefings in Bioinformatics 11, 1–11 (2010)

    Article  Google Scholar 

  14. Turner, F.S., Clutterbuck, D.R., Semple, C.A.M.: POCUS: mining genomic sequence annotation to predict disease genes. Genome Biology 4, R75 (2003)

    Google Scholar 

  15. von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M.A., Bork, P.: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research. 33, D433–D437 (2005)

    Google Scholar 

  16. Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S., Geer, L.Y., Helmberg, W., Kapustin, Y., Kenton, D.L., Khovayko, O., Lipman, D.J., Madden, T.L., Maglott, D.R., Ostell, J., Pruitt, K.D., Schuler, G.D., Schriml, L.M., Sequeira, E., Sherry, S.T., Sirotkin, K., Souvorov, A., Starchenko, G., Suzek, T.O., Tatusov, R., Tatusova, T.A., Wagner, L., Yaschenko, E.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 34, D173–D180 (2006)

    Google Scholar 

  17. Wheeler, D.L., Church, D.M., Lash, A.E., Leipe, D.D., Madden, T.L., Pontius, J.U., Schuler, G.D., Schriml, L.M., Tatusova, T.A., Wagner, L., Rapp, B.A.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 29, 11–16 (2001)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, S., Tranchevent, LC., De Moor, B., Moreau, Y. (2011). Cross-Species Candidate Gene Prioritization with MerKator. In: Kernel-based Data Fusion for Machine Learning. Studies in Computational Intelligence, vol 345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19406-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19406-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19405-4

  • Online ISBN: 978-3-642-19406-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics