Skip to main content

Semi-supervised Discourse Relation Classification with Structural Learning

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6608))

Abstract

The corpora available for training discourse relation classifiers are annotated using a general set of discourse relations. However, for certain applications, custom discourse relations are required. Creating a new annotated corpus with a new relation taxonomy is a time-consuming and costly process. We address this problem by proposing a semi-supervised approach to discourse relation classification based on Structural Learning. First, we solve a set of auxiliary classification problems using unlabeled data. Second, the learned classifiers are used to extend feature vectors to train a discourse relation classifier. By defining a relevant set of auxiliary classification problems, we show that the proposed method brings improvement of at least 50% in accuracy and F-score on the RST Discourse Treebank and Penn Discourse Treebank, when small training sets of ca. 1000 training instances are employed. This is an attractive perspective for training discourse relation classifiers on domains where little amount of labeled training data is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Louis, A., Joshi, A., Nenkova, A.: Discourse indicators for content selection in summarization. In: Proc. of SIGDIAL 2010, pp. 147–156 (2010)

    Google Scholar 

  2. Piwek, P., Hernault, H., Prendinger, H., Ishizuka, M.: Generating dialogues between virtual agents automatically from text. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 161–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Carlson, L., Marcu, D., Okurowski, M.E.: Building a discourse-tagged corpus in the framework of Rhetorical Structure Theory. In: Proc. of Second SIGdial Workshop on Discourse and Dialogue, vol. 16, pp. 1–10 (2001)

    Google Scholar 

  4. Wolf, F., Gibson, E.: Representing discourse coherence: A corpus-based study. Computational Linguistics 31, 249–287 (2005)

    Article  Google Scholar 

  5. Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A., Webber, B.: The Penn Discourse TreeBank 2.0. In: Proc. of LREC 2008 (2008)

    Google Scholar 

  6. Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: Toward a functional theory of text organization. Text 8, 243–281 (1988)

    Article  Google Scholar 

  7. Georg, G., Hernault, H., Cavazza, M., Prendinger, H., Ishizuka, M.: From rhetorical structures to document structure: Shallow pragmatic analysis for document engineering. In: Proc. of DocEng 2009, pp. 185–192. ACM, New York (2009)

    Google Scholar 

  8. Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Hernault, H., Bollegala, D., Ishizuka, M.: A semi-supervised approach to improve classification of infrequent discourse relations using feature vector extension. In: Proc. of EMNLP 2010, pp. 399–409 (2010)

    Google Scholar 

  10. Marcu, D., Echihabi, A.: An unsupervised approach to recognizing discourse relations. In: Proc. of ACL 2002, pp. 368–375 (2002)

    Google Scholar 

  11. Soricut, R., Marcu, D.: Sentence level discourse parsing using syntactic and lexical information. In: Proc. of NA-ACL 2003, vol. 1, pp. 149–156 (2003)

    Google Scholar 

  12. duVerle, D.A., Prendinger, H.: A novel discourse parser based on Support Vector Machine classification. In: Proc. of ACL 2009, pp. 665–673 (2009)

    Google Scholar 

  13. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  14. Sagae, K.: Analysis of discourse structure with syntactic dependencies and data-driven shift-reduce parsing. In: Proc. of IWPT 2009, pp. 81–84 (2009)

    Google Scholar 

  15. Pitler, E., Raghupathy, M., Mehta, H., Nenkova, A., Lee, A., Joshi, A.: Easily identifiable discourse relations. In: Proc. of COLING 2008 (Posters), pp. 87–90 (2008)

    Google Scholar 

  16. Pitler, E., Louis, A., Nenkova, A.: Automatic sense prediction for implicit discourse relations in text. In: Proc. of ACL 2009, pp. 683–691 (2009)

    Google Scholar 

  17. Lin, Z., Kan, M.Y., Ng, H.T.: Recognizing implicit discourse relations in the Penn Discourse Treebank. In: Proc. of EMNLP 2009, pp. 343–351 (2009)

    Google Scholar 

  18. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. of COLT 1998, pp. 92–100 (1998)

    Google Scholar 

  19. Caruana, R.: Multitask learning: A knowledge-based source of inductive bias. In: Proc. of ICML 1993, pp. 41–48 (1993)

    Google Scholar 

  20. Plackett, R.L.: Karl Pearson and the chi-squared test. International Statistical Review / Revue Internationale de Statistique 51, 59–72 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proc. of EMNLP 2006, pp. 120–128 (2006)

    Google Scholar 

  22. Loper, E., Bird, S.: NLTK: The natural language toolkit. In: Proc. of ACL 2002 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, pp. 63–70 (2002)

    Google Scholar 

  23. Magerman, D.M.: Statistical decision-tree models for parsing. In: Proc. of ACL 1995, pp. 276–283 (1995)

    Google Scholar 

  24. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language parsing. In: Advances in Neural Information Processing Systems, vol. 15. MIT Press, Cambridge (2003)

    Google Scholar 

  25. Prasad, R., Miltsakaki, E., Dinesh, N., Lee, A., Joshi, A., Robaldo, L., Webber, B.: The Penn Discourse Treebank 2.0 annotation manual. Technical report, University of Pennsylvania Institute for Research in Cognitive Science (2008)

    Google Scholar 

  26. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotatedcorpus of English: The Penn Treebank. Computational Linguistics 19, 313–330 (1993)

    Google Scholar 

  27. Okazaki, N.: Classias: A collection of machine-learning algorithms for classification (2009), http://www.chokkan.org/software/classias/

  28. Zhou, Z.M., Xu, Y., Niu, Z.Y., Lan, M., Su, J., Tan, C.L.: Predicting discourse connectives for implicit discourse relation recognition. In: Proc. of COLING 2010 (Posters), pp. 1507–1514 (2010)

    Google Scholar 

  29. Louis, A., Joshi, A., Prasad, R., Nenkova, A.: Using entity features to classify implicit discourse relations. In: Proc. of the SIGDIAL 2010, pp. 59–62 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernault, H., Bollegala, D., Ishizuka, M. (2011). Semi-supervised Discourse Relation Classification with Structural Learning. In: Gelbukh, A.F. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2011. Lecture Notes in Computer Science, vol 6608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19400-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19400-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19399-6

  • Online ISBN: 978-3-642-19400-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics