Abstract
In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points which can be robustly matched, reducing the matching ambiguities of the remaining points. This allows for efficient exploitation of the disparity search space, yielding accurate dense reconstruction without the need for global optimization. Moreover, our method automatically determines the disparity range and can be easily parallelized. We demonstrate the effectiveness of our approach on the large-scale Middlebury benchmark, and show that state-of-the-art performance can be achieved with significant speedups. Computing the left and right disparity maps for a one Megapixel image pair takes about one second on a single CPU core.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gallup, D., Frahm, J.M., Mordohai, P., Pollefeys, M.: Variable baseline/resolution stereo. In: CVPR, pp. 1–8 (2008)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. Journal of Computer Vision 47, 7–42 (2002)
Weber, M., Humenberger, M., Kubinger, W.: A very fast census-based stereo matching implementation on a graphics processing unit. In: IEEE Workshop on Embedded Computer Vision (2009)
Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: CVPR, pp. 648–655 (1998)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: International Conference on Computer Vision, pp. 508–515 (2001)
Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. International Journal of Computer Vision 70, 41–54 (2006)
Woodford, O., Torr, P., Reid, I., Fitzgibbon, A.: Global stereo reconstruction under second-order smoothness priors. PAMI 31, 2115–2128 (2009)
Cheng, L., Caelli, T.: Bayesian stereo matching. Computer Vision and Image Understanding 106, 85–96 (2007)
Kong, D., Tao, H.: Stereo matching via learning multiple experts behaviors. In: BMVC, pp. 97–106 (2006)
Wang, L., Jin, H., Yang, R.: Search space reduction for MRF stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 576–588. Springer, Heidelberg (2008)
Konolige, K.: Small vision system. hardware and implementation. In: International Symposium on Robotics Research, pp. 111–116 (1997)
Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: Theory and experiment. In: ICRA (1994)
Yoon, K.j., Member, S., Kweon, I.S.: Adaptive support-weight approach for correspondence search. PAMI 28, 650–656 (2006)
Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR (2006)
Liang, C.K., Cheng, C.C., Lai, Y.C., Chen, L.G., Chen, H.H.: Hardware-efficient belief propagation. In: Computer Vision and Pattern Recognition (2009)
Hirschmueller, H.: Stereo processing by semiglobal matching and mutual information. PAMI 30, 328–341 (2008)
Bobick, A.F., Intille, S.S.: Large occlusion stereo. International Journal of Computer Vision 33, 181–200 (1999)
Cech, J., Sára, R.: Efficient sampling of disparity space for fast and accurate matching. In: Computer Vision and Pattern Recognition (2007)
Kostkova, J., Sara, R.: Stratified dense matching for stereopsis in complex scenes. In: BMVC (2003)
Veksler, O.: Reducing search space for stereo correspondence with graph cuts. In: British Machine Vision Conference (2006)
Xiaoyan Hu, P.M.: Evaluation of stereo confidence indoors and outdoors. In: CVPR (2010)
Sára, R.: Finding the largest unambiguous component of stereo matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 900–914. Springer, Heidelberg (2002)
Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Hirschmueller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: CVPR, pp. 1–8 (2007)
Shewchuk, J.R.: In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)
Beeler, T., Bickel, B., Beardsley, P., Sumner, B., Gross, M.: High-quality single-shot capture of facial geometry. In: SIGGRAPH, vol. 29 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geiger, A., Roser, M., Urtasun, R. (2011). Efficient Large-Scale Stereo Matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19315-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-19315-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19314-9
Online ISBN: 978-3-642-19315-6
eBook Packages: Computer ScienceComputer Science (R0)