Skip to main content

Efficient Large-Scale Stereo Matching

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6492))

Included in the following conference series:

Abstract

In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points which can be robustly matched, reducing the matching ambiguities of the remaining points. This allows for efficient exploitation of the disparity search space, yielding accurate dense reconstruction without the need for global optimization. Moreover, our method automatically determines the disparity range and can be easily parallelized. We demonstrate the effectiveness of our approach on the large-scale Middlebury benchmark, and show that state-of-the-art performance can be achieved with significant speedups. Computing the left and right disparity maps for a one Megapixel image pair takes about one second on a single CPU core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gallup, D., Frahm, J.M., Mordohai, P., Pollefeys, M.: Variable baseline/resolution stereo. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  2. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. Journal of Computer Vision 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  3. Weber, M., Humenberger, M., Kubinger, W.: A very fast census-based stereo matching implementation on a graphics processing unit. In: IEEE Workshop on Embedded Computer Vision (2009)

    Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: CVPR, pp. 648–655 (1998)

    Google Scholar 

  5. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: International Conference on Computer Vision, pp. 508–515 (2001)

    Google Scholar 

  6. Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. International Journal of Computer Vision 70, 41–54 (2006)

    Article  Google Scholar 

  7. Woodford, O., Torr, P., Reid, I., Fitzgibbon, A.: Global stereo reconstruction under second-order smoothness priors. PAMI 31, 2115–2128 (2009)

    Article  Google Scholar 

  8. Cheng, L., Caelli, T.: Bayesian stereo matching. Computer Vision and Image Understanding 106, 85–96 (2007)

    Article  Google Scholar 

  9. Kong, D., Tao, H.: Stereo matching via learning multiple experts behaviors. In: BMVC, pp. 97–106 (2006)

    Google Scholar 

  10. Wang, L., Jin, H., Yang, R.: Search space reduction for MRF stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 576–588. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Konolige, K.: Small vision system. hardware and implementation. In: International Symposium on Robotics Research, pp. 111–116 (1997)

    Google Scholar 

  12. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: Theory and experiment. In: ICRA (1994)

    Google Scholar 

  13. Yoon, K.j., Member, S., Kweon, I.S.: Adaptive support-weight approach for correspondence search. PAMI 28, 650–656 (2006)

    Article  Google Scholar 

  14. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR (2006)

    Google Scholar 

  15. Liang, C.K., Cheng, C.C., Lai, Y.C., Chen, L.G., Chen, H.H.: Hardware-efficient belief propagation. In: Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  16. Hirschmueller, H.: Stereo processing by semiglobal matching and mutual information. PAMI 30, 328–341 (2008)

    Article  Google Scholar 

  17. Bobick, A.F., Intille, S.S.: Large occlusion stereo. International Journal of Computer Vision 33, 181–200 (1999)

    Article  Google Scholar 

  18. Cech, J., Sára, R.: Efficient sampling of disparity space for fast and accurate matching. In: Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  19. Kostkova, J., Sara, R.: Stratified dense matching for stereopsis in complex scenes. In: BMVC (2003)

    Google Scholar 

  20. Veksler, O.: Reducing search space for stereo correspondence with graph cuts. In: British Machine Vision Conference (2006)

    Google Scholar 

  21. Xiaoyan Hu, P.M.: Evaluation of stereo confidence indoors and outdoors. In: CVPR (2010)

    Google Scholar 

  22. Sára, R.: Finding the largest unambiguous component of stereo matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 900–914. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Hirschmueller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  25. Shewchuk, J.R.: In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  26. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., Gross, M.: High-quality single-shot capture of facial geometry. In: SIGGRAPH, vol. 29 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geiger, A., Roser, M., Urtasun, R. (2011). Efficient Large-Scale Stereo Matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19315-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19315-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19314-9

  • Online ISBN: 978-3-642-19315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics