Skip to main content

Geometry Aware Local Kernels for Object Recognition

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6492))

Included in the following conference series:

Abstract

Standard learning techniques can be difficult to apply in a setting where instances are sets of features, varying in cardinality and with additional geometric structure. Kernel-based classification methods can be effective in this situation as they avoid explicitly representing the instances. We describe a kernel function which attempts to establish correspondences between local features while also respecting the geometric structure. We generalize some of the existing work on context dependent kernels and demonstrate a connection to popular graph kernels. We also propose an efficient computation scheme which makes the new kernel applicable to instances with hundreds of features. The kernel function is shown to be positive semidefinite, making it suitable for use in a wide range of learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  2. Lazebnik, S., Schmid, C., Ponce, J.: Semi-local affine parts for object recognition. In: British Machine Vision Conference, BMVC (2004)

    Google Scholar 

  3. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  4. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Transactions on Neural Network 10, 1055–1064 (1999)

    Article  Google Scholar 

  5. Demirkesen, C., Cherifi, H.: A comparison of multiclass svm methods for real world natural scenes. In: International Conference on Advanced Concepts for Intelligent Vision Systems (2008)

    Google Scholar 

  6. Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. Progress in brain research 155, 23–36 (2006)

    Article  Google Scholar 

  7. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA (1999)

    Google Scholar 

  8. Wolf, L., Shashua, A.: Learning over sets using kernel principal angles. Journal of Machine Learning Research 4, 913–931 (2003)

    MATH  Google Scholar 

  9. Kondor, R.I., Jebara, T.: A kernel between sets of vectors. In: ICML (2003)

    Google Scholar 

  10. Moreno, P.J., Ho, P., Vasconcelos, N.: A kullback-leibler divergence based kernel for svm classification in multimedia applications. In: NIPS (2003)

    Google Scholar 

  11. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. Journal of Machine Learning Research 8, 725–760 (2007)

    MATH  Google Scholar 

  12. Odone, F., Barla, A., Verri, A.: Building kernels from binary strings for image matching. IEEE Transactions on Image Processing 14, 169–180 (2005)

    Article  Google Scholar 

  13. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  14. Bo, L., Sminchisescu, C.: Efficient match kernels between sets of features for visual recognition. In: NIPS (2009)

    Google Scholar 

  15. Wallraven, C., Caputo, B., Graf, A.B.A.: Recognition with local features: the kernel recipe. In: ICCV (2003)

    Google Scholar 

  16. Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Optimal assignment kernels for attributed molecular graphs. In: ICML (2005)

    Google Scholar 

  17. Lyu, S.: Mercer kernels for object recognition with local features. In: CVPR (2005)

    Google Scholar 

  18. Vert, J.P.: The optimal assignment kernel is not positive definite. Technical report, arXiv (2008)

    Google Scholar 

  19. Boughhorbel, S., Tarel, J.P., Fleuret, F.: Non-mercer kernels for svm object recognition. In: BMVC (2004)

    Google Scholar 

  20. Parsana, M., Bhattacharya, S., Bhattacharya, C., Ramakrishnan, K.R.: Kernels on attributed pointsets with applications. In: NIPS (2007)

    Google Scholar 

  21. Sahbi, H., Audibert, J.Y., Rabarisoa, J., Keriven, R.: Context-dependent kernel design for object matching and recognition. In: CVPR (2008)

    Google Scholar 

  22. Gärtner, T.: Exponential and geometric kernels for graphs. In: NIPS Workshop on Unreal Data: Principles of Modeling Nonvectorial Data (2002)

    Google Scholar 

  23. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: COLT (2003)

    Google Scholar 

  24. Vishwanathan, S., Borgwardt, K., Kondor, I., Schraudolph, N.: Graph kernels. Journal of Machine Learning Research 9, 1–37 (2008)

    MATH  Google Scholar 

  25. Bach, F.: Graph kernels between point clouds. In: ICML (2008)

    Google Scholar 

  26. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)

    Google Scholar 

  27. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  29. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceedings of 2nd IEEE Workshop on Applications of Computer Vision (1994)

    Google Scholar 

  30. Fei-Fei, L., Fergus, R., Perona., P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR Workshop on Generative-Model Based Vision (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Semenovich, D., Sowmya, A. (2011). Geometry Aware Local Kernels for Object Recognition. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19315-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19315-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19314-9

  • Online ISBN: 978-3-642-19315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics