Skip to main content

Spatiotemporal Closure

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6492))

Included in the following conference series:

Abstract

Spatiotemporal segmentation is an essential task for video analysis. The strong interconnection between finding an object’s spatial support and finding its motion characteristics makes the problem particularly challenging. Motivated by closure detection techniques in 2D images, this paper introduces the concept of spatiotemporal closure. Treating the spatiotemporal volume as a single entity, we extract contiguous “tubes” whose overall surface is supported by strong appearance and motion discontinuities. Formulating our closure cost over a graph of spatiotemporal superpixels, we show how it can be globally minimized using the parametric maxflow framework in an efficient manner. The resulting approach automatically recovers coherent spatiotemporal components, corresponding to objects, object parts, and object unions, providing a good set of multiscale spatiotemporal hypotheses for high-level video analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, D.: Unsupervised video segmentation based on watersheds and temporal tracking. CirSysVideo 8, 539–546 (1998)

    Google Scholar 

  2. Moscheni, F., Bhattacharjee, S., Kunt, M.: Spatiotemporal segmentation based on region merging. PAMI 20, 897–915 (1998)

    Article  Google Scholar 

  3. Gelgon, M., Bouthemy, P.: A region-level motion-based graph representation and labeling for tracking a spatial image partition. Pattern Recognition 33, 725–740 (2000)

    Article  Google Scholar 

  4. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. PAMI 23, 800–810 (2001)

    Article  Google Scholar 

  5. DeMenthon, D.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. In: SMVP (2002)

    Google Scholar 

  6. Shi, J., Malik, J.: Motion segmentation and tracking using normalized cuts. In: ICCV, pp. 1154–1160 (1998)

    Google Scholar 

  7. Fowlkes, C., Belongie, S., Malik, J.: Efficient spatiotemporal grouping using the nyström method. In: CVPR, pp. 231–238 (2001)

    Google Scholar 

  8. Huang, Y., Liu, Q., Metaxas, D.: Video object segmentation by hypergraph cut. In: CVPR, pp. 1738–1745 (2009)

    Google Scholar 

  9. Greenspan, H., Goldberger, J., Mayer, A.: Probabilistic space-time video modeling via piecewise gmm. PAMI 26, 384–396 (2004)

    Article  Google Scholar 

  10. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal Contour Closure by Superpixel Grouping. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 480–493. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. PAMI 31, 2290–2297 (2009)

    Article  Google Scholar 

  12. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic object segmentation. In: CVPR (2010)

    Google Scholar 

  13. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in computer vision. In: ICCV (2007)

    Google Scholar 

  14. Li, F., Carreira, J., Sminchisescu, C.: Object Recognition as Ranking Holistic Figure-Ground Hypotheses. In: CVPR (2010)

    Google Scholar 

  15. Pritch, Y., Rav-Acha, A., Peleg, S.: Nonchronological video synopsis and indexing. PAMI 30, 1971–1984 (2008)

    Article  Google Scholar 

  16. Welch, G., Bishop, G.: An introduction to the kalman filter. Technical report (1995)

    Google Scholar 

  17. Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. IJCV 26, 63–84 (1998)

    Article  Google Scholar 

  18. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. IJCV 29, 5–28 (1998)

    Article  Google Scholar 

  19. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25, 564–577 (2003)

    Article  Google Scholar 

  20. Megret, R., DeMenthon, D.: A survey of spatio-temporal grouping techniques. Technical report, University of Maryland, College Park (2002)

    Google Scholar 

  21. Wang, J., Adelson, E.: Representing moving images with layers. TIP 3, 625–638 (1994)

    Google Scholar 

  22. Weiss, Y., Adelson, E.H.: A unified mixture framework for motion segmentation: Incorporating spatial coherence and estimating the number of models. In: CVPR, p. 321 (1996)

    Google Scholar 

  23. Weiss, Y.: Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In: CVPR, p. 520 (1997)

    Google Scholar 

  24. Jojic, N., Frey, B.J.: Learning flexible sprites in video layers. In: CVPR, vol. 1, p. 199 (2001)

    Google Scholar 

  25. Jepson, A.D., Fleet, D.J., Black, M.J.: A layered motion representation with occlusion and compact spatial support. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 692–706. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Bascle, B., Deriche, R.: Region tracking through image sequences. In: ICCV, p. 302 (1995)

    Google Scholar 

  27. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. PAMI 22, 266–280 (2000)

    Article  Google Scholar 

  28. Chung, D., MacLean, W., Dickinson, S.: Integrating region and boundary information for spatially coherent object tracking. IVC 24, 680–692 (2006)

    Article  Google Scholar 

  29. Cremers, D., Soatto, S.: Motion competition: A variational approach to piecewise parametric motion segmentation. IJCV 62, 249–265 (2005)

    Article  Google Scholar 

  30. Patras, I., Lagendijk, R.L., Hendriks, E.A.: Video segmentation by map labeling of watershed segments. PAMI 23, 326–332 (2001)

    Article  Google Scholar 

  31. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26, 530–549 (2004)

    Article  Google Scholar 

  32. Stein, A., Hoiem, D., Hebert, M.: Learning to find object boundaries using motion cues. In: ICCV (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levinshtein, A., Sminchisescu, C., Dickinson, S. (2011). Spatiotemporal Closure. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19315-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19315-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19314-9

  • Online ISBN: 978-3-642-19315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics