Skip to main content

Unsupervised Feature Selection for Salient Object Detection

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

Abstract

Feature selection plays a crucial role in deciding the salient regions of an image as in any other pattern recognition problem. However the problem of identifying the relevant features that plays a fundamental role in saliency of an image has not received much attention so far. We introduce an unsupervised feature selection method to improve the accuracy of salient object detection. The noisy irrelevant features in the image are identified by maximizing the mixing rate of a Markov process running on a linear combination of various graphs, each representing a feature. The global optimum of this convex problem is achieved by maximizing the second smallest eigen value of the graph Laplacian via semi-definite programming. The enhanced image graph model, after the removal of irrelevant features, is shown to improve the salient object detection performance on a large image data base with annotated ‘ground truth’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26(3) (2007) ISSN: 0301–0730

    Google Scholar 

  2. Boyd, S.: Convex Optimization of Graph Laplacian Eigenvalues. In: Proceedings International Congress of Mathematicians, vol. 3, pp. 1311–1319 (2006)

    Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Bruce, N.D., Tsotsos, J.K.: Saliency Based on Information Maximization. In: NIPS, pp. 155–162 (2005)

    Google Scholar 

  5. Chen, L.Q., Xie, X., Fan, X., Ma, W.Y., Zhang, H.J., Zhou, H.Q.: A visual attention model for adapting images on small displays. Multimedia Syst. 9, 353–364 (2003)

    Article  Google Scholar 

  6. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  7. Gao, D., Vasconcelos, N.: Discriminant Saliency for Visual Recognition from Cluttered Scenes. In: NIPS, pp. 481–488 (2004)

    Google Scholar 

  8. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs to model saliency in images. In: CVPR, pp. 1698–1705 (2009)

    Google Scholar 

  9. Gopalakrishnan, V., Hu, Y., Rajan, D.: Salient Region Detection by Modeling Distributions of Color and Orientation. IEEE Transactions on Multimedia 11(5), 892–905 (2009)

    Article  Google Scholar 

  10. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page and software) (2009), http://stanford.edu/~boyd/cvx

  11. Guo, C., Ma, Q., Zhang, L.: Spatio-temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform. In: CVPR (2008)

    Google Scholar 

  12. Harel, J., Koch, C., Perona, P.: Graph-Based Visual Saliency. In: NIPS, pp. 545–552 (2006)

    Google Scholar 

  13. He, X., Cai, D., Niyogi, P.: Laplacian Score for Feature Selection. In: NIPS (2002)

    Google Scholar 

  14. Hou, X., Zhang, L.: Saliency Detection: A Spectral Residual Approach. In: CVPR (2007)

    Google Scholar 

  15. Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  16. Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.: Simultaneous Feature Selection and Clustering Using Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. (2004)

    Google Scholar 

  17. Liu, T., Sun, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to Detect A Salient Object. In: CVPR (2007)

    Google Scholar 

  18. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised Feature Selection Using Feature Similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 301–312 (2002)

    Article  Google Scholar 

  19. Norris, J.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  20. Santella, A., Agrawala, M., DeCarlo, D., Salesin, D., Cohen, M.F.: Gaze-based interaction for semi-automatic photo cropping. In: CHI, pp. 771–780 (2006)

    Google Scholar 

  21. Stentiford, F.: Attention based Auto Image Cropping. In: The 5th International Conference on Computer Vision Systems (2007)

    Google Scholar 

  22. Sun, J., Boyd, S., Xiao, L., Diaconis, P.: The Fastest Mixing Markov Process on a Graph and a Connection to a Maximum Variance Unfolding Problem. SIAM Review 48, 681–699 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Valenti, R., Sebe, N., Gevers, T.: Image Saliency by Isocentric Curvedness and Color. In: ICCV (2009)

    Google Scholar 

  24. Volker, R., Tilman, L.: Feature selection in clustering problems. In: NIPS (2004)

    Google Scholar 

  25. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Network 19, 1395–1407 (2006)

    Article  MATH  Google Scholar 

  26. Zhao, B., Kwok, J., Wang, F., Zhang, C.: Unsupervised Maximum Margin Feature Selection with Manifold Regularization. In: CVPR (June 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopalakrishnan, V., Hu, Y., Rajan, D. (2011). Unsupervised Feature Selection for Salient Object Detection. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics