Skip to main content

Inventory Record Inaccuracy, RFID Technology Adoption and Supply Chain Coordination

  • Chapter
  • First Online:
Supply Chain Coordination under Uncertainty

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

Abstract

Most retailers suffer from substantial discrepancies between inventory quantities recorded in the system and stocks truly available to customers. Promising full inventory transparency, RFID technology has often been suggested as a remedy to this problem. We consider inventory record inaccuracy in a supply chain model, where a Stackelberg manufacturer sets the wholesale price and a retailer determines how much to stock for sale to customers. We first analyze the impact of inventory record inaccuracy on optimal stocking decisions and profits. Contrasting optimal decisions in a decentralized supply chain with those in an integrated supply chain, we find that inventory record inaccuracy exacerbates the inefficiencies resulting from double marginalization in decentralized supply chains. Assuming that RFID technology can eliminate the problem of inventory record inaccuracy, we determine the cost thresholds at which RFID adoption becomes profitable. We show that a decentralized supply chain benefits more from RFID technology, such that RFID adoption improves supply chain coordination.

This chapter is based on the article “Inventory record inaccuracy, double marginalization and RFID adoption” by H.S. Heese, published 2007 in Production and Operations Management (volume 16, issue 5, pages 542–553).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Analyzing a single-period model with zero starting inventory, we will use the terms order and stocking quantity interchangeably.

  2. 2.

    In the following, the cases where inequality conditions are satisfied with equality are assigned arbitrarily, without loss of generality.

  3. 3.

    While the specific value of two-thirds is characteristic of the uniform distribution, a threshold based stocking policy is likely for all demand distributions with finite support (see earlier discussion of the two cases). We observed similar threshold based stocking policies in numerical experiments for normally distributed demand and order yield.

  4. 4.

    This threshold value solves \( 12{\alpha^2}(1 - \alpha ) = 1 \), so \( \bar{\alpha } \approx 89.6\% \). This threshold result has been mentioned in Inderfurth (2005).

  5. 5.

    An implication of this assumption is that RFID adoption eliminates shrinkage. While this effect can be an important driver of RFID adoption, much of the following discussion focuses on the potential benefit of RFID technology in reducing inventory uncertainty, assuming there is no shrinkage \( ({\mu_Y} = 1) \). However, unless noted otherwise, all results are also valid for the case with shrinkage \( ({\mu_Y} < 1) \).

  6. 6.

    To avoid trivial cases we assume \( t < r - c \).

References

  • Alexander K, Birkhofer G, Gramling K, Kleinberger H, Leng S, Moogimane D, Woods M (2002) Focus on retail: applying Auto-ID to improve product availability at the retail shelf. White paper, Auto-ID Center, MIT, Cambridge

    Google Scholar 

  • Anderson Consulting (1996) Where to look for incremental sales gains: the retail problem of out-of-stock merchandise. The Coca-Cola Retailing Research Council, Atlanta

    Google Scholar 

  • Atali A, Lee HL, Özer Ö (2009) If the inventory manager knew: value of visibility and RFID under imperfect inventory information. Working paper, Stanford University, Stanford, CA

    Google Scholar 

  • Cachon GP (2003) Supply chain coordination with contracts. In: Graves S, de Kok T (eds) Handbooks in OR/MS: supply chain management: design, coordination and operation. North-Holland, Amsterdam, pp 229–239

    Google Scholar 

  • Camdereli AZ, Swaminathan JM (2010) Misplaced inventory and radio-frequency identification (RFID) technology: information and coordination. Prod Oper Manage 19(1):1–18

    Article  Google Scholar 

  • DeHoratius N, Raman A (2008) Inventory record inaccuracy: an empirical analysis. Manage Sci 54(4):627–641

    Article  Google Scholar 

  • DeHoratius N, Mersereau A, Schrage L (2008) Retail inventory management when records are inaccurate. Manuf Serv Oper Manage 10(2):257–277

    Article  Google Scholar 

  • Dutta A, Lee HL, Whang S (2007) RFID and operations management: technology, value and incentives. Prod Oper Manage 16(5):646–655

    Article  Google Scholar 

  • Fleisch E, Tellkamp C (2005) Inventory inaccuracy and supply chain performance: a simulation study of a retail supply chain. Int J Prod Econ 95(3):373–385

    Article  Google Scholar 

  • Gaukler GM, Seifert RW, Hausman WH (2007) Item-level RFID in the retail supply chain. Prod Oper Manage 16(1):65–76

    Article  Google Scholar 

  • Gruen TW, Corsten DS, Bharadwaj S (2002) Retail out-of-stocks: a worldwide examination of extent, causes, and consumer responses. The Grocery Manufacturers of America, Washington, DC

    Google Scholar 

  • Inderfurth K (2004) Analytical solution for a single-period production-inventory problem with uniformly distributed yield and demand. Cent Eur J Oper Res 12:117–127

    Google Scholar 

  • Inderfurth K (2005) Incorporating demand and yield uncertainty in advanced MRP systems. In: Lasch R, Janker CG (eds) Logistik management – innovative logistikkozepte. Deutscher Universitaets-Verlag, Wiesbaden

    Google Scholar 

  • Kang Y, Gershwin SB (2005) Information inaccuracy and inventory systems: stock loss and stockout. IIE Trans 37(9):843–859

    Article  Google Scholar 

  • Karaer Ö, Lee HL (2007) Managing the reverse channel with RFID-enabled negative demand information. Prod Oper Manage 16(5):625–645

    Article  Google Scholar 

  • Kök AG, Shang KH (2007) Inspection and replenishment policies for systems with inventory record inaccuracy. Manuf Serv Oper Manage 9(2):185–205

    Article  Google Scholar 

  • Lee HL, Özer Ö (2007) Unlocking the value of RFID. Prod Oper Manage 16(1):40–64

    Article  Google Scholar 

  • McFarlane D, Sheffi Y (2003) The impact of automatic identification on supply chain operations. Int J Logistics Manage 14(1):1–17

    Article  Google Scholar 

  • Porteus EL (2002) Foundations of stochastic inventory theory. Stanford University Press, Stanford, CA

    Google Scholar 

  • Raman A, DeHoratius N, Ton Z (2001) Execution: the missing link in retail operations. Calif Manage Rev 43(3):136–152

    Google Scholar 

  • Rekik Y, Jemai Z, Sahin E, Dallery Y (2005) Involving the performance of retail stores subject to execution errors: coordination versus Auto-ID technology. Technical report, LGI – Ecole Centrale Paris, Paris

    Google Scholar 

  • Rekik Y, Sahin E, Dallery Y (2008) Analysis of the impact of the RFID technology on reducing product misplacement errors at retail stores. Int J Prod Econ 112(1):264–278

    Article  Google Scholar 

  • Rekik Y, Sahin E, Dallery Y (2009) Inventory inaccuracy in retail stores due to theft: an analysis of the benefits of RFID. Int J Prod Econ 118(1):189–198

    Article  Google Scholar 

  • Sahin E (2004) A qualitative and quantitative analysis of the impact of the auto ID technology on the performance of supply chains. PhD thesis, LGI – Ecole Centrale Paris, Paris

    Google Scholar 

  • Sari K (2010) Exploring the impacts of radio frequency identification (RFID) technology on supply chain performance. Eur J Oper Res 207(1):174–183

    Article  Google Scholar 

  • Spengler JJ (1950) Vertical integration and antitrust policy. J Polit Econ 58(4):347–352

    Article  Google Scholar 

  • Veinott AF (1965) Optimal policy for a multi-product, dynamic, nonstationary inventory problem. Manage Sci 12(3):206–222

    Article  Google Scholar 

  • Want R (2004) RFID: a key to automating everything. Sci Am 290(1):56–65

    Article  Google Scholar 

  • Yano CA, Lee HL (1995) Lot sizing with random yields: a review. Oper Res 43(2):311–334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sebastian Heese .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Additional Results and Proofs

Lemma 1

  1. (a)

    \( {Q_{1A}} \) is increasing in \( {\mu_Y} \) for \( 0 < \alpha \le 2/3 \), if \( s > r/4 \), and increasing-decreasing otherwise.

  2. (b)

    \( {Q_{1B}} \) is increasing in \( {\mu_Y} \) (for \( 2/3 < \alpha < 1 \)), if \( s > r/4 \), decreasing if \( s < c/2 \), and decreasing-increasing otherwise.

  3. (c)

    If \( {\mu_Y} = 1 \), then \( {Q_{1A}} < \hat{Q} \), and \( {Q_{1B}} > \hat{Q} \Leftrightarrow \alpha > \bar{\alpha } \), where \( 2/3 < \bar{\alpha } < 1 \).

  4. (d)

    If \( \alpha > 2/3 \), then \( {Q_{1B}} > {Q_{1A}} \).

Proof of Lemma 1

Part (a): \( \frac{{\partial {Q_{1A}}}}{{\partial {\mu_Y}}} > 0 \Leftrightarrow {\mu_Y} < \frac{{2c}}{r} \); \( \alpha \le \frac{2}{3} \Leftrightarrow {\mu_Y} \le \frac{{3c}}{{r + 2s}} \). \( {Q_{1A}} \) is increasing in \( {\mu_Y} \) for \( 0 < \alpha \le 2/3 \), if \( \frac{{3c}}{{r + 2s}} <\frac{{2c}}{r}\Leftrightarrow s> \frac{r}{4} \), and increasing-decreasing otherwise. Part (b): \( \frac{{\partial {Q_{1B}}}}{{\partial {\mu_Y}}} > 0 \Leftrightarrow {\mu_Y} > \frac{c}{{2s}} \); \( \alpha > \frac{2}{3} \Leftrightarrow {\mu_Y} > \frac{{3c}}{{r + 2s}} \). \( {Q_{1B}} \) is increasing in \( {\mu_Y} \) on \( 2/3 < \alpha < 1 \), if \( \frac{c}{{2s}} < \frac{{3c}}{{r + 2s}} \Leftrightarrow s > \frac{r}{4} \), decreasing if \( \frac{c}{{2s}} > 1 \Leftrightarrow s < \frac{c}{2} \), and decreasing-increasing otherwise. Part (c) \( {Q_{1A}} < \hat{Q} \) by inspection; \( {Q_{1B}} < \hat{Q} \Leftrightarrow \frac{1}{{2\sqrt {{3(1 - \alpha )}} }} < \alpha \Leftrightarrow 12{\alpha^2}(1 - \alpha ) > 1 \). The left side of this inequality is decreasing in \( \alpha \)(for \( \alpha > 2/3 \)). At \( \alpha = 2/3 \), it is equal to \( 16/9 > 1 \), and it is equal to zero at \( \alpha = 1 \). Hence there exists \( \bar{\alpha } \in \left( {\frac{2}{3},1} \right) \), where the inequality is satisfied with equality. Part (d) \( {Q_{1B}} > {Q_{1A}} \Leftrightarrow \frac{{{\mu_D}}}{{{\mu_Y}\sqrt {{3(1 - \alpha )}} }} > \frac{{3{\mu_D}\alpha }}{{2{\mu_Y}}} \Leftrightarrow \frac{1}{{3(1 - \alpha )}} > \frac{{9{\alpha^2}}}{4} \) (since both sides of the inequality are positive) \( \Leftrightarrow \frac{1}{4}(3\alpha + 1){(2 - 3\alpha )^2} > 0 \Leftrightarrow \alpha \ne \frac{2}{3} \).□

Proof of Proposition 1

The optimal order quantities are derived in Inderfurth (2004). The resulting expected profits can be obtained by substituting these quantities into (3) and (4).□

Proof of Proposition 2

The optimal order quantity \( {Q_2} \) is the well-known critical fractile solution to the classic newsvendor model. The expected profits follow from substituting \( {Q_2} \) into the expected cost function (5) and simplification.□

Proof of Proposition 3

The retailer’s optimal order quantities are as given in Proposition 1, but with a critical fractile of \( {\alpha_3} = \frac{{r - {w_3}/{\mu_Y}}}{{r - s}} \) instead of \( \alpha \). The manufacturer’s profit equals \( \pi_3^M = ({w_3} - c){Q_3} \). Two cases need to be distinguished depending on the resulting value of \( {\alpha_3} \). Use \( {\bar{w}_3} = \left( {r + 2s} \right)\frac{{{\mu_Y}}}{3} \) to denote the wholesale price at which \( {\alpha_3} = 2/3 \). For \( {w_3} \ge {\bar{w}_3} \) (i.e., \( {\alpha_3} \le 2/3 \)), \( \pi_{3A}^M = ({w_{3A}} - c){Q_{3A}} = ({w_{3A}} - c)\frac{{3{\mu_D}}}{{2{\mu_Y}}}\left( {\frac{{r - {w_{3A}}/{\mu_Y}}}{{r - s}}} \right) \); \( \frac{{{\partial^2}\pi_{3A}^M({w_{3A}})}}{{\partial {w_{3A}}^2}} = - \frac{{3{\mu_D}}}{{(r - s){\mu_Y}}} < 0 \); \( \frac{{\partial \pi_{3A}^M({w_{3A}})}}{{\partial {w_{3A}}}} = 0 \to {w_{3A}} = \frac{{c + r{\mu_Y}}}{2} \); \( {w_{3A}} > {\bar{w}_3} \Leftrightarrow {\left. {{\alpha_3}} \right|_{{w_{3A}}}} < 2/3 \Leftrightarrow 3(c - {\mu_Y}s) + (r - s){\mu_Y} > 0 \). For \( {w_3} < {\bar{w}_3} \) (i.e., \( {\alpha_3} > 2/3 \)), \( \pi_{3B}^M = ({w_{3B}} - c){Q_{3B}} = ({w_{3B}} - c)\frac{{{\mu_D}}}{{{\mu_Y}}}\sqrt {{\frac{{r - s}}{{3({w_{3B}}/{\mu_Y} - s)}}}} \); \( \frac{{\partial \pi_{3B}^M({w_{3B}})}}{{\partial {w_{3B}}}} = \frac{{{\mu_D}}}{{{\mu_Y}}}\sqrt {{\frac{1}{{3(1 - {\alpha_3})}}}} \left( {\frac{{c + {w_{3B}} - 2s{\mu_Y}}}{{2{w_{3B}} - 2s{\mu_Y}}}} \right) > 0 \to {w_{3B}} = {\bar{w}_3} \) (both cases are equivalent at \( {\bar{w}_3} \)). Since \( {\left. {\pi_{3A}^M} \right|_{{\alpha_3} = 2/3}} = {\left. {\pi_{3B}^M} \right|_{{\alpha_3} = 2/3}} \) and \( {w_{3A}} > {\bar{w}_3} \), the optimal wholesale price is \( {w_3} = {w_{3A}} \). Substituting this optimal wholesale price gives the expressions in the Proposition.□

Proof of Proposition 4

The retailers optimal order quantity \( {Q_4} \) is the standard critical fractile solution to the newsvendor problem in (5) – the critical fractile is \( \frac{{r - {w_4}}}{{r - s}} \). The manufacturer’s profit equals \( \pi_4^M = ({w_4} - (c + t)){Q_4} = ({w_4} - (c + t))2{\mu_D}\left( {\frac{{r - {w_4}}}{{r - s}}} \right) \); \( \frac{{{\partial^2}\pi_4^M({w_4})}}{{\partial {w_4}^2}} = - \frac{{4{\mu_D}}}{{(p + r - s)}} < 0 \); \( \frac{{\partial \pi_4^M({w_4})}}{{\partial {w_4}}} = 0 \to {w_4} = \frac{{r + c + t}}{2} \). Substitution of the optimal wholesale price and simplification gives the expressions in the Proposition.□

Proof of Proposition 5

If \( \alpha \le \frac{2}{3}:\pi_2^{SC} > \pi_{1A}^{SC} \Leftrightarrow \frac{{{{\left( {r - c - t} \right)}^2}}}{{r - s}}{\mu_D} > \frac{{3{{\left( {r - c/{\mu_Y}} \right)}^2}}}{{4(r - s)}}{\mu_D} \)

\( \Leftrightarrow 4{\left( {r - c - t} \right)^2} > 3{\left( {r - c/{\mu_Y}} \right)^2} \Leftrightarrow 2\left( {r - c - t} \right) > \sqrt {3} \left( {r - c/{\mu_Y}} \right) \) (both sides are positive) \( \Leftrightarrow t < \left( {r - c} \right) - \frac{{\sqrt {3} }}{2}\left( {r - c/{\mu_Y}} \right) \); If \( \alpha > \frac{2}{3}:\pi_2^{SC} > \pi_{1B}^{SC} \) \( \Leftrightarrow \frac{{{{\left( {r - c - t} \right)}^2}}}{{r - s}}{\mu_D} > (r - s){\mu_D} - 2{\mu_D}\sqrt {{\frac{{\left( {r - s} \right)(c/{\mu_Y} - s)}}{3}}} \)

\( \Leftrightarrow {\left( {\frac{{r - c - t}}{{r - s}}} \right)^2} > 1 - 2\sqrt {{\frac{{1 - \alpha }}{3}}} \left( {1 - 2\sqrt {{\frac{{1 - \alpha }}{3}}} > 1 - 2\sqrt {{\frac{{1 - 2/3}}{3}}} = 1/3 > 0} \right) \)

\( \Leftrightarrow \frac{{r - c - t}}{{r - s}} > \sqrt {{1 - 2\sqrt {{\frac{{1 - \alpha }}{3}}} }} \Leftrightarrow t < (r - c) - (r - s)\sqrt {{1 - 2\sqrt {{\frac{{1 - \alpha }}{3}}} }} \).□

Proof of Proposition 6

The inequalities \( \pi_4^R > \pi_3^R \) and \( \pi_4^M > \pi_3^M \) (hence by definition also \( \pi_4^{SC} > \pi_3^{SC} \)) can both easily be transformed to \( 4{\left( {r - c - t} \right)^2} > 3{\left( {r - c/{\mu_Y}} \right)^2} \), which is the same inequality as in the proof of Proposition 5 for case A.□

Proof of Proposition 7

\( {t_A} > {t_B} \) \( \Leftrightarrow (r - c) - \frac{{\sqrt {3} }}{2}(r - c/{\mu_Y}) > (r - c) - (r - s)\sqrt {{1 - 2\sqrt {{\frac{{1 - \alpha }}{3}}} }} \) \( \Leftrightarrow \sqrt {{1 - 2\sqrt {{\frac{{1 - \alpha }}{3}}} }} > \frac{{\sqrt {3} }}{2}\alpha \Leftrightarrow 1 - 2\sqrt {{\frac{{1 - \alpha }}{3}}} > \frac{3}{4}{\alpha^2} \) (both sides of the inequality are positive for \( \alpha > 2/3 \)) \( \Leftrightarrow 1 - \frac{3}{4}{\alpha^2} > 2\sqrt {{\frac{{1 - \alpha }}{3}}} \) (both sides of the inequality are positive for \( \alpha > 2/3 \)) \( \Leftrightarrow 1 - \frac{3}{2}{\alpha^2} + \frac{9}{{16}}{\alpha^4} > \frac{4}{3} - \frac{4}{3}\alpha \Leftrightarrow \frac{9}{{16}}\left( {2 + \alpha } \right){\left( {\alpha - \frac{2}{3}} \right)^3} > 0 \Leftrightarrow \alpha > \frac{2}{3}. \)

Appendix 2: Overview of Notation

Symbol

Description

\( c \)

Unit cost

\( r \)

Unit revenue

\( s \)

Unit salvage value

\( t \)

RFID tag cost (per unit)

\( Y\sim U[0,\bar{Y}] \)

Yield (random variable)

\( {\mu_Y} \)

Mean yield

\( D\sim U[0,\bar{D}] \)

Demand (random variable)

\( {\mu_D} \)

Mean demand

\( w \)

Unit wholesale price (decision variable)

\( Q \)

Order quantity (decision variable)

\( \pi \)

Expected profit

 Superscript (M = manufacturer; R = retailer; SC = supply chain)

\( \alpha \)

Critical fractile for the supply chain

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heese, H.S. (2011). Inventory Record Inaccuracy, RFID Technology Adoption and Supply Chain Coordination. In: Choi, TM., Cheng, T. (eds) Supply Chain Coordination under Uncertainty. International Handbooks on Information Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19257-9_19

Download citation

Publish with us

Policies and ethics