Skip to main content

Chiral Perturbation Theory for Baryons

  • Chapter
  • First Online:
A Primer for Chiral Perturbation Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 830))

Abstract

So far we have considered the purely mesonic sector of chiral perturbation theory, involving the interaction of Goldstone bosons with each other and with external fields. However, ChPT can be extended to also describe the dynamics of baryons at low energies. Here we will concentrate on matrix elements with a single baryon in the initial and final states. As in the mesonic sector, Green functions are calculated in an effective-Lagrangian approach in combination with a power counting. The symmetries of QCD and the pattern of their breaking again constrain the possible interaction terms appearing in the effective Lagrangian, and we will discuss several approaches to obtain a consistent power counting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically speaking the adjoint representation is faithful (one-to-one) modulo the center \(Z\) of SU(3), which is defined as the set of all elements commuting with all elements of SU(3) and is given by \(Z=\{\text{\small 1}{\kern-3.5pt}1, \exp(2\pi i/3){\text{\small 1}{\kern-3.5pt}1}, \exp (4\pi i/3) { \text{\small 1}{\kern-3.5pt}1 } \}\).

  2. 2.

    The power counting will be discussed below.

  3. 3.

    The quantity \(m_N-m\) is of \({\fancyscript{O}}(q^2)\) as we will see in Sect. 4.5.3.

  4. 4.

    In the following, spin and isospin quantum numbers as well as isospinors are suppressed.

  5. 5.

    In fact, also the definition of the pion-nucleon form factor of Eq. 4.24 contains a sign opposite to the standard convention so that, in the end, the Goldberger-Treiman relation emerges with the conventional sign.

  6. 6.

    Using \(m_N=(m_p+m_n)/2=938.92\) MeV, \(g_A=1.2695(29)\), \(F_\pi=92.42(26)\) MeV, and \(g_{\pi N}=13.21^{+0.11}_{-0.05}\) [56], one obtains \(\Updelta_{\pi N}=(2.37^{+0.89}_{-0.51})\) %.

  7. 7.

    The terminology “first and second classes” refers to the transformation property of strangeness-conserving semi-leptonic weak interactions under \({\fancyscript{G}}\) conjugation [61] which is the product of charge symmetry and charge conjugation \({\fancyscript{G}}={{\fancyscript{C}}}\,\exp(i\pi Q_{V2})\). A second-class contribution would appear in terms of a third form factor \(G_T\) contributing as

    $$ G_T(t) \bar{u}(p^{\prime}) i\,{\frac{\sigma^{\mu\nu} q_\nu}{2 m_N}}\, \gamma_5 \,{\frac{\tau_i}{2}} \,u(p). $$

    Assuming perfect \({\fancyscript{G}}\)-conjugation symmetry, the form factor \(G_T\) vanishes.

  8. 8.

    One also finds the parameterization

    $$ T=\bar{u}(p^{\prime})\left(D-{\frac{1}{4m_N}} [\not\!{q}^{\prime},\not\!{q}]B\right)u(p) $$

    with \(D=A+\nu B\), where, for simplicity, we have omitted the isospin labels.

  9. 9.

    For easier comparison with the result of ChPT we have chosen the sign opposite to the standard convention of Eq. 1.70. See also Sect. 4.3.1.

  10. 10.

    Recall that we use the normalization \(\bar{u}u=2 m_N\).

  11. 11.

    The threshold parameters are defined in terms of a multipole expansion of the \(\pi N\) scattering amplitude [14]. The sign convention for the \(s\)-wave scattering parameters \(a_{0+}^{(\pm)}\) is opposite to the convention of the effective-range expansion.

  12. 12.

    We do not expand the fraction \(1/(1+\mu)\), because the \(\mu\) dependence is not of dynamical origin.

  13. 13.

    The result, in principle, holds for a general target of isospin \(T\) (except for the pion) after replacing 3/4 by \(T(T+1)\) and \(\mu\) by \(M_\pi/M_T\).

  14. 14.

    The calculations were performed in the heavy-baryon approach (see Sect. 4.6.1) in which the \(c_i\) are renormalization-scale independent.

  15. 15.

    This relation can be understood as follows: For each internal line we have a propagator in combination with an integration with measure \(d^4 k/(2\pi)^4\). Therefore, there are \(I_\pi+I_N\) integrations. However, at each vertex we have a four-momentum conserving delta function, reducing the number of integrations by \(N_\pi+N_N-1\), where the \(-1\) is related to the overall four-momentum conserving delta function \(\delta^4(P_f-P_i)\).

  16. 16.

    In the low-energy effective field theory there are no closed fermion loops. In other words, in the single-nucleon sector exactly one fermion line runs through the diagram connecting the initial and final states.

  17. 17.

    Note that we work with the basic Lagrangian.

  18. 18.

    For brevity, we use the expression “up to \({\fancyscript{O}}(q^n)\)” to mean “up to and including \({\fancyscript{O}}(q^n)\)” in the following.

  19. 19.

    Note that \(P_{v\pm}\) do not define orthogonal projectors in the mathematical sense, because they do not satisfy \(P^{\dagger}_{v\pm}=P_{v\pm}\), with the exception of the special case \(v^\mu=(1,0,0,0)\).

  20. 20.

    Because of Eq. 4.99, a partial derivative acting on \({\fancyscript{N}}_v\) produces a small four-momentum.

  21. 21.

    We include the combination \(\sigma^{\mu\nu}\gamma_5\) for convenience.

  22. 22.

    For notational convenience we suppress the subscripts \(m\) and \(n\) of Eq. 4.134.

  23. 23.

    \({\rm det}(\Uplambda)=1\) and \({\Uplambda^0}_0\geq 1\).

  24. 24.

    It is common practice to denote both Lorentz transformations and the tensor describing the \(\Updelta\) with the same symbol \(\Uplambda\).

  25. 25.

    Note that \(m_\Updelta\) denotes the leading-order contribution to the mass of the \(\Updelta\) in an expansion in small quantities.

  26. 26.

    The Cartesian notation is convenient for displaying final results in a compact form while the spherical notation is used to apply angular momentum coupling methods. Recall \(x_{-1}=(x_1-ix_2)/\sqrt{2}\), \(x_0=x_3\), and \(x_{+1}=-(x_1+ix_2)/\sqrt{2}\).

  27. 27.

    We now follow common practice in physics and omit the \(\otimes\) symbol.

  28. 28.

    We return to the repeated-index summation convention, because the ranges of summation should now be clear.

  29. 29.

    We have explicitly included the projection operator in the definition of the Lagrangian.

  30. 30.

    With this choice we associate a factor \(iS^{\mu\nu}_F(p)\) with an internal \(\Updelta\) line of momentum \(p\).

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Becher, T. In: Bernstein, A.M., Goity, J.L., Meißner, U.-G. (eds.) Chiral Dynamics: Theory and Experiment III, World Scientific, Singapore (2002)

    Google Scholar 

  3. Becher, T., Leutwyler, H.: Eur. Phys. J. C 9, 643 (1999)

    ADS  Google Scholar 

  4. Becher, T., Leutwyler, H.: JHEP 0106, 017 (2001)

    Google Scholar 

  5. Bernard, V., Kaiser, N., Kambor, J., Meißner, U.-G.: Nucl. Phys. B 388, 315 (1992)

    Article  ADS  Google Scholar 

  6. Bernard, V., Kaiser, N., Meißner, U.-G.: Int. J. Mod. Phys. E 4, 193 (1995)

    Article  ADS  Google Scholar 

  7. Bernard, V., Kaiser, N., Meißner, U.-G.: Nucl. Phys. A 615, 483 (1997)

    Article  ADS  Google Scholar 

  8. Bernard, V., Hemmert, T.R., Meißner, U.-G.: Phys. Lett. B 565, 137 (2003)

    Article  ADS  MATH  Google Scholar 

  9. Borasoy, B.: Phys. Rev. D 59, 054021 (1999)

    Article  ADS  Google Scholar 

  10. Bruns, P.C., Meißner, U.-G.: Eur. Phys. J. C 40, 97 (2005)

    Article  ADS  Google Scholar 

  11. Bruns, P.C., Meißner, U.-G.: Eur. Phys. J. C 58, 407 (2008)

    Article  ADS  Google Scholar 

  12. Butler, M.N., Savage, M.J., Springer, R.P.: Nucl. Phys. B 399, 69 (1993)

    Article  ADS  Google Scholar 

  13. Callan, C.G., Coleman, S.R., Wess, J., Zumino, B.: Phys. Rev. 177, 2247 (1969)

    Article  ADS  Google Scholar 

  14. Chew, G.F., Goldberger, M.L., Low, F.E., Nambu, Y.: Phys. Rev. 106, 1337 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Coleman, S.R., Wess, J., Zumino, B.: Phys. Rev. 177, 2239 (1969)

    Article  ADS  Google Scholar 

  16. Dirac, P.A.M.: Lectures on Quantum Mechanics. Dover, Mineola (2001)

    Google Scholar 

  17. Ecker, G.: Prog. Part. Nucl. Phys. 35, 1 (1995)

    Article  ADS  Google Scholar 

  18. Ericson, T.E., Weise, W.: Pions and Nuclei. Clarendon, Oxford (1988). Apps 3 and 8

    Google Scholar 

  19. Fearing, H.W., Poulis, G.I., Scherer, S.: Nucl. Phys. A 570, 657 (1994)

    Article  ADS  Google Scholar 

  20. Fearing, H.W., Lewis, R., Mobed, N., Scherer, S.: Phys. Rev. D 56, 1783 (1997)

    Article  ADS  Google Scholar 

  21. Fettes, N., Meißner, U.-G., Steininger, S.: Nucl. Phys. A 640, 199 (1998)

    Article  ADS  Google Scholar 

  22. Fettes, N., Meißner, U.-G., Mojžiš, M., Steininger, S.: Ann. Phys. 283, 273 (2001) [Erratum, ibid 288, 249 (2001)]

    Google Scholar 

  23. Foldy, L.L., Wouthuysen, S.A.: Phys. Rev. 78, 29 (1950)

    Article  ADS  MATH  Google Scholar 

  24. Fuchs, T., Gegelia, J., Japaridze, G., Scherer, S.: Phys. Rev. D 68, 056005 (2003)

    Article  ADS  Google Scholar 

  25. Fuchs, T., Schindler, M.R., Gegelia, J., Scherer, S.: Phys. Lett. B 575, 11 (2003)

    Article  ADS  MATH  Google Scholar 

  26. Gasser, J., Sainio, M.E., Švarc, A.: Nucl. Phys. B 307, 779 (1988)

    Article  ADS  Google Scholar 

  27. Gegelia, J., Japaridze, G.: Phys. Rev. D 60, 114038 (1999)

    Article  ADS  Google Scholar 

  28. Gegelia, J., Japaridze, G.S., Turashvili, K.S.: Theor. Math. Phys. 101, 1313 (1994) [Teor. Mat. Fiz. 101, 225 (1994)]

    Google Scholar 

  29. Gell-Mann, M., Low, F.: Phys. Rev. 84, 350 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Georgi, H.: Weak Interactions and Modern Particle Theory. Benjamin/Cummings, Menlo Park (1984)

    Google Scholar 

  31. Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints. Springer, Berlin (1990)

    Google Scholar 

  32. Goldberger, M.L., Treiman, S.B.: Phys. Rev. 110, 1178 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  33. Hacker, C., Wies, N., Gegelia, J., Scherer, S.: Phys. Rev. C 72, 055203 (2005)

    Article  ADS  Google Scholar 

  34. Hemmert, T.R., Holstein, B.R., Kambor, J.: J. Phys. G 24, 1831 (1998)

    Google Scholar 

  35. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  36. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  37. Jenkins, E., Manohar, A.V.: Phys. Lett. B 255, 558 (1991)

    Article  ADS  Google Scholar 

  38. Jenkins, E., Manohar, A.V.: Phys. Lett. B 259, 353 (1991)

    Article  ADS  Google Scholar 

  39. Koch, R.: Nucl. Phys. A 448, 707 (1986)

    Article  ADS  Google Scholar 

  40. Krause, A.: Helv. Phys. Acta 63, 3 (1990)

    Google Scholar 

  41. Lehmann, D., Prezeau, G.: Phys. Rev. D 65, 016001 (2002)

    Article  ADS  Google Scholar 

  42. Mannel, T., Roberts, W., Ryzak, Z.: Nucl. Phys. B 368, 204 (1992)

    Article  ADS  Google Scholar 

  43. Matsinos, E.: Phys. Rev. C 56, 3014 (1997)

    Article  ADS  Google Scholar 

  44. Meißner, U.-G.: PoS (LAT2005), 009 (2005)

    Google Scholar 

  45. Mojžiš, M.: Eur. Phys. J. C 2, 181 (1998)

    ADS  Google Scholar 

  46. Moldauer, P.A., Case, K.M.: Phys. Rev. 102, 279 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Nakamura, K. et al.:[Particle Data Group], J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  48. Nambu, Y.: Phys. Rev. Lett. 4, 380 (1960)

    Article  ADS  Google Scholar 

  49. Nath, L.M., Etemadi, B., Kimel, J.D.: Phys. Rev. D 3, 2153 (1971)

    Article  ADS  Google Scholar 

  50. Pagels, H.: Phys. Rev. 179, 1337 (1969)

    Article  ADS  Google Scholar 

  51. Pascalutsa, V., Phillips, D.R.: Phys. Rev. C 67, 055202 (2003)

    Article  ADS  Google Scholar 

  52. Pilling, T.: Int. J. Mod. Phys. A 20, 2715 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Rarita, W., Schwinger, J.S.: Phys. Rev. 60, 61 (1941)

    Article  ADS  MATH  Google Scholar 

  54. Schindler, M.R., Gegelia, J., Scherer, S.: Phys. Lett. B 586, 258 (2004)

    Article  ADS  Google Scholar 

  55. Schindler, M.R., Gegelia, J., Scherer, S.: Nucl. Phys. B 682, 367 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Schröder, H.C. et al.: Eur. Phys. J. C 21, 473 (2001)

    Article  ADS  Google Scholar 

  57. Smirnov, V.A.:Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts Mod. Phys. 177, 1 (2001)

    Google Scholar 

  58. Tang, H.B., Ellis, P.J.: Phys. Lett. B 387, 9 (1996)

    Article  ADS  Google Scholar 

  59. Thomas, A.W.: Adv. Nucl. Phys. 13, 1 (1984)

    Google Scholar 

  60. Tomozawa, Y.: Nuovo Cimento 46A, 707 (1966)

    ADS  Google Scholar 

  61. Weinberg, S.: Phys. Rev. 112, 1375 (1958)

    Article  ADS  MATH  Google Scholar 

  62. Weinberg, S.: Phys. Rev. Lett. 17, 616 (1966)

    Article  ADS  Google Scholar 

  63. Weinberg, S.: Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  64. Weinberg, S.: Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  65. Weinberg, S.: The Quantum Theory of Fields. Foundations, vol. 1. Cambridge University Press, Cambridge (1995). Chap. 12

    Google Scholar 

  66. Wies, N., Gegelia, J., Scherer, S.: Phys. Rev. D 73, 094012 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Scherer .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherer, S., Schindler, M.R. (2011). Chiral Perturbation Theory for Baryons. In: A Primer for Chiral Perturbation Theory. Lecture Notes in Physics, vol 830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19254-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19254-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19253-1

  • Online ISBN: 978-3-642-19254-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics