Skip to main content

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 243))

  • 1517 Accesses

Abstract

As it was noted before, the transition radiation is a manifestation of so-called “polarization mechanism of radiation”, in which the field of a charged particle passing through the medium deforms (polarizes) the electron shells of the medium atoms. It is the dynamic polarization of the medium atoms that becomes a cause for electromagnetic radiation. If a relativistic charged particle flies in a vacuum close to any medium at the distance

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson, J.D.: The classical electrodynamics. NY (1998)

    Google Scholar 

  2. Smith, S.J., Purcell, E.M.: Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953)

    Article  ADS  Google Scholar 

  3. Ishizuka, H., Kawamura, Y., Yokoo, K., et al.: Smith–Purcell experiment utilizing a field-emitter array cathode: measurements of radiation. Nucl. Instrum. Methods. A 475, 593–598 (2001)

    Article  ADS  Google Scholar 

  4. Bolotovskiy, B.M., Burtsev, A.K.: Emission from charge flying above grating. Opt. Spectrosc. 19, 470 (1965). (in Russian)

    ADS  Google Scholar 

  5. Bolotovskiy, B.M., Voskresenskiy, G.V.: Emission from charged particles in periodic structures. Physics-Uspekhi 94, 377 (1968). (in Russian)

    Google Scholar 

  6. Van den Berg, P.M.: Smith–Purcell radiation from a point charge moving parallel to a reflection grating. J. Opt. Soc. Am 63, 1588–1597 (1973)

    Article  ADS  Google Scholar 

  7. Brownell, J.H., Walsh, J., Doucas, G.: Spontaneous Smith–Purcell radiation described through induced surface currents. Phys. Rev. E. 57, 1075–1080 (1998)

    Article  ADS  Google Scholar 

  8. Potylitsyn, A.P.: Smith–Purcell effect as resonant diffraction radiation. Nucl. Instrum. Methods B 145, 60–66 (1998)

    Article  ADS  Google Scholar 

  9. Kube, G.: Calculation of Smith–Purcell radiation from a volume strip grating. Nucl. Instrum. Methods B 227, 180–190 (2005)

    Article  ADS  Google Scholar 

  10. Haererle, O., Rullhusen, P., Salone, J.M., et al.: Calculations of Smith–Purcell radiation generated by electrons of 1–100 MeV. Phys. Rev. E 49, 3340–3352 (1994)

    Article  ADS  Google Scholar 

  11. Petit, R.: Electromagnetic Theory of Gratings. Springer, Berlin (1980)

    Google Scholar 

  12. Brownell, J.H., Doucas, G.: Role of the grating profile in Smith–Purcell radiation at high energies. Phys Rev Special Topics Accelerators and Beams 9, 092801 (2006)

    Article  ADS  Google Scholar 

  13. Kazantsev, A.P., Surdutovich, G.I.: Sov. Phys. Dokl. 147, 74 (1962)

    Google Scholar 

  14. Karlovets, D.V., Potylitsyn, A.P.: On the theory of diffraction radiation. JETP 134, 887–902 (2008)

    Google Scholar 

  15. Potylitsyn, A.P., Karataev, P.V., Naumenko, G.A.: Resonant diffraction radiation from an ultrarelativistic particle moving close to a tilted grating. Phys. Rev. E. 61, 7039 (2000)

    Article  ADS  Google Scholar 

  16. Gover, A., Dvorkis, P., Elisha, U.: Angular radiation pattern of Smith–Purcell radiation. J. Opt. Soc. Am. B 1, 723–728 (1984)

    Article  ADS  Google Scholar 

  17. Doucas, G., Mulvey, J.H., Omori, M., et al.: First observation of Smith–Purcell radiation from relativistic electrons. Phys. Rev. Lett. 69, 1761–1764 (1992)

    Article  ADS  Google Scholar 

  18. Goldstein, M., Walsh, J.E., Kimmit, M.F., et al.: Demonstration of a micro far-infrared Smith–Purcell emitter. Appl. Phys. Lett. 71, 452–454 (1997)

    Article  ADS  Google Scholar 

  19. Kube, G., Backe, H., Euteneur, H. et al.: Observation of optical Smith–Purcell radiation at an electron beam energy of 855 MeV. Phys. Rev. E. 65, 056501-1–056515-15 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Petrovich Potylitsyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potylitsyn, A.P. (2011). Smith–Purcell Radiation. In: Electromagnetic Radiation of Electrons in Periodic Structures. Springer Tracts in Modern Physics, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19248-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19248-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19247-0

  • Online ISBN: 978-3-642-19248-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics