Advertisement

Efficient Reconstruction of RC-Equivalent Strings

  • Ferdinando Cicalese
  • Péter L. Erdős
  • Zsuzsanna Lipták
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

In the reverse complement (RC) equivalence model, it is not possible to distinguish between a string and its reverse complement. We show that one can still reconstruct a binary string of length n, up to reverse complement, using a linear number of subsequence queries of bounded length. A simple information theoretic lower bound proves the number of queries to be tight. Our result is also optimal w.r.t. the bound on the query length given in [Erdős et al., Ann. of Comb. 2006].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpi, A., de Luca, A.: Words and special factors. Theor. Comput. Sci. 259(1-2), 145–182 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    de Luca, A.: On the combinatorics of finite words. Theor. Comput. Sci. 218(1), 13–39 (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dudík, M., Schulman, L.J.: Reconstruction from subsequences. J. Comb. Theory, Ser. A 103(2), 337–348 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Erdős, P.L., Ligeti, P., Sziklai, P., Torney, D.C.: Subwords in reverse-complement order. Annals of Combinatorics 10, 415–430 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fici, G., Mignosi, F., Restivo, A., Sciortino, M.: Word assembly through minimal forbidden words. Theor. Comput. Sci. 359(1-3), 214–230 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Krasikov, I., Roditty, Y.: On a reconstruction problem for sequences. J. Comb. Theory, Ser. A 77(2), 344–348 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Levenshtein, V.I.: Efficient reconstruction of sequences. IEEE Transactions on Information Theory 47(1), 2–22 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pevzner, P.: l-tuple DNA sequencing: Computer analysis. Journal of Biomolecular Structure and Dynamics 7, 63–73 (1989)Google Scholar
  9. 9.
    Piña, C., Uzcátegui, C.: Reconstruction of a word from a multiset of its factors. Theor. Comput. Sci. 400(1-3), 70–83 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Preparata, F.P.: Sequencing-by-hybridization revisited: The analog-spectrum proposal. IEEE/ACM Trans. Comput. Biology Bioinform. 1(1), 46–52 (2004)CrossRefGoogle Scholar
  11. 11.
    Schützenberger, M.-P., Simon, I.: Combinatorics on Words, by M. Lothaire. Subwords. ch. 6. Cambridge University Press, Cambridge (1983) Google Scholar
  12. 12.
    Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)Google Scholar
  13. 13.
    Skiena, S., Sundaram, G.: Reconstructing strings from substrings. Journal of Computational Biology 2(2), 333–353 (1995)CrossRefGoogle Scholar
  14. 14.
    Tsur, D.: Tight bounds for string reconstruction using substring queries. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 448–459. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ferdinando Cicalese
    • 1
  • Péter L. Erdős
    • 2
  • Zsuzsanna Lipták
    • 3
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversity of SalernoItaly
  2. 2.Alfréd Rényi Institute of MathematicsBudapestHungary
  3. 3.AG Genominformatik, Technische FakultätBielefeld UniversityGermany

Personalised recommendations