Advertisement

On Antimagic Labeling for Generalized Web and Flower Graphs

  • Joe Ryan
  • Oudone Phanalasy
  • Mirka Miller
  • Leanne Rylands
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

An antimagic labeling of a graph with p vertices and q edges is a bijection from the set of edges to the set of integers { 1, 2, ..., q } such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. A graph is antimagic if it has an antimagic labeling.

Completely separating systems arose from certain problems in information theory and coding theory. Recently these systems have been shown to be useful in constructing antimagic labelings of particular graphs.

Keywords

m-level generalized web graph m-level generalized flower graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bača, M., Miller, M.: Super Edge-Antimagic Graphs: a Wealth of Problems and Some Solutions. BrownWalker Press, Boca Raton (2008)Google Scholar
  2. 2.
    Cheng, Y.: A new class of antimagic Cartesian product graphs. Discrete Math. 308(24), 6441–6448 (2008), http://dx.doi.org/10.1016/j.disc.2007.12.032 CrossRefzbMATHGoogle Scholar
  3. 3.
    Cranston, D.W.: Regular bipartite graphs are antimagic. J. Graph Theory 60(3), 173–182 (2009), http://dx.doi.org/10.1002/jgt.20347 CrossRefzbMATHGoogle Scholar
  4. 4.
    Dickson, T.J.: On a problem concerning separating systems of a finite set. J. Combinatorial Theory 7, 191–196 (1969)CrossRefzbMATHGoogle Scholar
  5. 5.
    Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 16(\(\sharp\)DS6) (2009)Google Scholar
  6. 6.
    Hartsfield, N., Ringel, G.: Pearls in graph theory: a comprehensive introduction. Academic Press Inc., Boston (1990)zbMATHGoogle Scholar
  7. 7.
    Phanalasy, O., Miller, M., Iliopoulos, C.S., Pissis, S.P., Vaezpour, E.: Construction of antimagic labeling for the Cartesian product of regular graphs (preprint)Google Scholar
  8. 8.
    Phanalasy, O., Miller, M., Rylands, L., Lieby, P.: On a relationship between completely separating systems and antimagic labeling of regular graphs (submitted)Google Scholar
  9. 9.
    Rényi, A.: On random generating elements of a finite Boolean algebra. Acta Sci. Math. Szeged 22, 75–81 (1961)zbMATHGoogle Scholar
  10. 10.
    Roberts, I.T.: Extremal Problems and Designs on Finite Sets. Ph.D. thesis, Curtin University of Technology (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joe Ryan
    • 1
  • Oudone Phanalasy
    • 1
    • 2
  • Mirka Miller
    • 1
    • 3
    • 4
    • 5
  • Leanne Rylands
    • 6
  1. 1.School of Electrical Engineering and Computer ScienceThe University of NewcastleAustralia
  2. 2.Department of MathematicsNational University of LaosVientianeLaos
  3. 3.Department of MathematicsUniversity of West BohemiaPilsenCzech Republic
  4. 4.Department of Computer ScienceKing’s College LondonUK
  5. 5.Department of MathematicsITB BandungIndonesia
  6. 6.School of Computing and MathematicsUniversity of Western SydneyAustralia

Personalised recommendations