Advertisement

On a Relationship between Completely Separating Systems and Antimagic Labeling of Regular Graphs

  • Oudone Phanalasy
  • Mirka Miller
  • Leanne Rylands
  • Paulette Lieby
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

A completely separating system (CSS) on a finite set [n] is a collection \(\mathcal C\) of subsets of [n] in which for each pair a ≠ b ∈ [n], there exist \(A, B\in\mathcal C\) such that a ∈ A, b ∉ A and b ∈ B, a ∉ B.

An antimagic labeling of a graph with p vertices and q edges is a bijection from the set of edges to the set of integers {1,2, ..., q} such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. A graph is antimagic if it has an antimagic labeling.

In this paper we show that there is a relationship between CSSs on a finite set and antimagic labeling of graphs. Using this relationship we prove the antimagicness of various families of regular graphs.

Keywords

completely separating system vertex antimagic edge labeling antimagic labeling regular graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Kaplan, G., Lev, A., Roditty, Y., Yuster, R.: Dense graphs are antimagic. J. Graph Theory 47(4), 297–309 (2004), http://dx.doi.org/10.1002/jgt.20027 CrossRefzbMATHGoogle Scholar
  2. 2.
    Bača, M., Miller, M.: Super Edge-Antimagic Graphs: a Wealth of Problems and Some Solutions. BrownWalker Press, Boca Raton (2008)Google Scholar
  3. 3.
    Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs. Proc. IEEE 65, 562–570 (1977)CrossRefGoogle Scholar
  4. 4.
    Bloom, G.S., Golomb, S.W.: Numbered complete graphs, unusual rulers, and assorted applications. In: Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976). Lecture Notes in Math., vol. 642, pp. 53–65. Springer, Berlin (1978)Google Scholar
  5. 5.
    Cheng, Y.: A new class of antimagic Cartesian product graphs. Discrete Math. 308(24), 6441–6448 (2008), http://dx.doi.org/10.1016/j.disc.2007.12.032 CrossRefzbMATHGoogle Scholar
  6. 6.
    Cranston, D.W.: Regular bipartite graphs are antimagic. J. Graph Theory 60(3), 173–182 (2009), http://dx.doi.org/10.1002/jgt.20347 CrossRefzbMATHGoogle Scholar
  7. 7.
    Dickson, T.J.: On a problem concerning separating systems of a finite set. J. Combinatorial Theory 7, 191–196 (1969)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 16(\(\sharp\)DS6) (2009)Google Scholar
  9. 9.
    Hartsfield, N., Ringel, G.: Pearls in graph theory: a comprehensive introduction. Academic Press Inc., Boston (1990)zbMATHGoogle Scholar
  10. 10.
    Phanalasy, O., Roberts, I., Rylands, L.: Covering separating systems and an application to search theory. Australas. J. Combin. 45, 3–14 (2009)zbMATHGoogle Scholar
  11. 11.
    Ramsay, C., Roberts, I.T.: Minimal completely separating systems of sets. Australas. J. Combin. 13, 129–150 (1996)zbMATHGoogle Scholar
  12. 12.
    Ramsay, C., Roberts, I.T., Ruskey, F.: Completely separating systems of k-sets. Discrete Math. 183(1-3), 265–275 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Roberts, I.T.: Extremal Problems and Designs on Finite Sets. Ph.D. thesis, Curtin University of Technology (1999)Google Scholar
  14. 14.
    Roberts, I., D’Arcy, S., Gilbert, K., Rylands, L., Phanalasy, O.: Separating systems, Sperner systems, search theory. In: Ryan, J., Manyem, P., Sugeng, K., Miller, M. (eds.) Proceedings of the Sixteenth Australasian Workshop on Combinatorial Algorithms, pp. 279–288 (September 2005)Google Scholar
  15. 15.
    Wang, T.M.: Toroidal grids are anti-magic. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 671–679. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Wang, T.M., Hsiao, C.C.: On anti-magic labeling for graph products. Discrete Math. 308(16), 3624–3633 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, Y., Sun, X.: The antimagicness of the cartesian product of graphs. Theor. Comput. Sci. 410(8-10), 727–735 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oudone Phanalasy
    • 1
    • 2
  • Mirka Miller
    • 1
    • 3
    • 4
    • 5
  • Leanne Rylands
    • 6
  • Paulette Lieby
    • 7
  1. 1.School of Electrical Engineering and Computer ScienceThe University of NewcastleAustralia
  2. 2.Department of MathematicsNational University of LaosVientianeLaos
  3. 3.Department of MathematicsUniversity of West BohemiaPilsenCzech Republic
  4. 4.Department of Computer ScienceKing’s College LondonUK
  5. 5.Department of MathematicsITB BandungIndonesia
  6. 6.School of Computing and MathematicsUniversity of Western SydneyAustralia
  7. 7.NICTACanberraAustralia

Personalised recommendations