Advertisement

Testing the Simultaneous Embeddability of Two Graphs Whose Intersection Is a Biconnected Graph or a Tree

  • Patrizio Angelini
  • Giuseppe Di Battista
  • Fabrizio Frati
  • Maurizio Patrignani
  • Ignaz Rutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

In this paper we study the time complexity of the problem Simultaneous Embedding with Fixed Edges (Sefe), that takes two planar graphs G 1 = (V,E 1) and G 2 = (V,E 2) as input and asks whether a planar drawing Γ1 of G 1 and a planar drawing Γ2 of G 2 exist such that: (i) each vertex v ∈ V is mapped to the same point in Γ1 and in Γ2; (ii) every edge e ∈ E 1 ∩ E 2 is mapped to the same Jordan curve in Γ1 and Γ2. First, we show a polynomial-time algorithm for Sefe when the intersection graph of G 1 and G 2, that is the planar graph G 1 ∩ 2 = (V,E 1 ∩ E 2), is biconnected. Second, we show that Sefe, when G 1 ∩ 2 is a tree, is equivalent to a suitably-defined book embedding problem. Based on such an equivalence and on recent results by Hong and Nagamochi, we show a linear-time algorithm for the Sefe problem when G 1 ∩ 2 is a star.

Keywords

Outer Edge Jordan Curve Intersection Graph Internal Vertex Positive Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: Symposium on Discrete Algorithms (SODA 2010), pp. 202–221 (2010)Google Scholar
  2. 2.
    Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected graph or a tree. Tech. Report 175, Dipartimento di Informatica e Automazione, Università Roma Tre (2010)Google Scholar
  3. 3.
    Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric simultaneous embedding. CoRR (2010)Google Scholar
  4. 4.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)CrossRefzbMATHGoogle Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Di Giacomo, E., Liotta, G.: Simultaneous embedding of outerplanar graphs, paths, and cycles. Int. J. Comput. Geometry Appl. 17(2), 139–160 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous geometric graph embeddings. In: Hong, S.H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fowler, J.J., Gutwenger, C., Jünger, M., Mutzel, P., Schulz, M.: An SPQR-tree approach to decide special cases of simultaneous embedding with fixed edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 157–168. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Fowler, J.J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted pairs of planar graphs allowing simultaneous embedding with fixed edges. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 146–158. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self-intersecting when drawn simultaneously. Discrete Mathematics 307, 1909–1916 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Hong, S.H., Nagamochi, H.: Two-page book embedding and clustered graph planarity. Tech. Report 2009-004, Department of Applied Mathematics & Physics, Kyoto University (2009)Google Scholar
  17. 17.
    Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J. Graph Alg. & Appl. 13(2), 205–218 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giuseppe Di Battista
    • 1
  • Fabrizio Frati
    • 1
  • Maurizio Patrignani
    • 1
  • Ignaz Rutter
    • 2
  1. 1.Dipartimento di Informatica e AutomazioneUniversità Roma TreItaly
  2. 2.Institute of Theoretical InformaticsKarlsruhe Institute of Technology (KIT)Germany

Personalised recommendations