Advertisement

Computing Role Assignments of Proper Interval Graphs in Polynomial Time

  • Pinar Heggernes
  • Pim van ’t Hof
  • Daniël Paulusma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees.

Keywords

Polynomial Time Connected Graph Maximal Clique Interval Graph Chordal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of STOC 1980, pp. 82–93. ACM, New York (1980)Google Scholar
  2. 2.
    Bodlaender, H.L.: The classification of coverings of processor networks. Journal of Parallel and Distributed Computing 6, 166–182 (1989)CrossRefGoogle Scholar
  3. 3.
    Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case of cellular edge local computations. Fundamenta Informaticae 74, 85–114 (2006)zbMATHGoogle Scholar
  5. 5.
    Chalopin, J., Paulusma, D.: Graph labelings derived from models in distributed computing. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 301–312. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Information and Computation 85, 12–75 (1990)CrossRefzbMATHGoogle Scholar
  7. 7.
    Everett, M.G., Borgatti, S.: Role colouring a graph. Mathematical Social Sciences 21, 183–188 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fiala, J., Kratochvíl, J., Kloks, T.: Fixed-parameter complexity of λ-labelings. Discrete Applied Mathematics 113, 59–72 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89–99 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoretical Computer Science 349, 67–81 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fiala, J., Paulusma, D.: Comparing universal covers in polynomial time. Theory of Computing Systems 46, 620–635 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pacific Journal of Mathematics 15, 835–855 (1965)CrossRefzbMATHGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  14. 14.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. In: Annals of Discrete Mathematics, vol. 57. Elsevier B.V., Amsterdam (2004)Google Scholar
  15. 15.
    Ibarra, L.: The clique-separator graph for chordal graphs. Discrete Applied Mathematics 157, 1737–1749 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. Journal of Combinatorial Theory, Series B 71, 1–16 (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lekkerkerker, C., Boland, D.: Representation of finite graphs by a set of intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)zbMATHGoogle Scholar
  18. 18.
    Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph isomorphism. Journal of the ACM 26, 183–195 (1979)CrossRefzbMATHGoogle Scholar
  19. 19.
    Pekec, A., Roberts, F.S.: The role assignment model nearly fits most social networks. Mathematical Social Sciences 41, 275–293 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Reidemeister, K.: Einführung in die kombinatorische Topologie. Braunschweig: Friedr. Vieweg. Sohn A.-G. XII, 209 S (1932)Google Scholar
  21. 21.
    Rieck, Y., Yamashita, Y.: Finite planar emulators for K 4,5 − 4K 2 and K 1,2,2,2 and Fellows’ conjecture. European Journal of Combinatorics 31, 903–907 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Roberts, F.S.: Indifference Graphs. In: Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)Google Scholar
  23. 23.
    Sheng, L.: 2-Role assignments on triangulated graphs. Theoretical Computer Science 304, 201–214 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pinar Heggernes
    • 1
  • Pim van ’t Hof
    • 2
  • Daniël Paulusma
    • 2
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.School of Engineering and Computing Sciences, Science LaboratoriesDurham UniversityDurhamEngland

Personalised recommendations