Advertisement

Single Parameter FPT-Algorithms for Non-trivial Games

  • Vladimir Estivill-Castro
  • Mahdi Parsa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

We know that k -Uniform Nash is W[2]-Complete when we consider imitation symmetric win-lose games (with k as the parameter) even when we have two players. However, this paper provides positive results regarding Nash equilibria. We show that consideration of sparse games or limitations of the support result in fixed-parameter algorithms with respect to one parameter only for the k -Uniform Nash problem. That is, we show that a sample uniform Nash equilibrium in r-sparse imitation symmetric win-lose games is not as hard because it can be found in FPT time (i.e polynomial in the size of the game, but maybe exponential in r). Moreover, we show that, although NP-Complete, the problem of Best Nash Equilibrium is also fix-parameter tractable.

Keywords

Algorithmic Game Theory Computational Complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, T., Kane, D., Valiant, P.: On the complexity of two-player win-lose games. In: 46th Annual IEEE Symp. on Foundations of Computer Science, FOCS 2005, pp. 113–122. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  2. 2.
    Bonifaci, V., Iorio, U.D., Laura, L.: The complexity of uniform Nash equilibria and related regular subgraph problems. Theoretical Computer Science 401(1-3), 144–152 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I., Xia, X.: Tight lower bounds for certain parameterized NP-hard problems. Information and Computation 201(2), 216–231 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, X., Deng, X., Teng, S.-H.: Sparse games are hard. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 262–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Codenotti, B., Stefankovic, D.: On the computational complexity of Nash equilibria for (0,1) bimatrix games. Information Processing Letters 94, 145–150 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. In: Gottlob, G., Walsh, T. (eds.) 18th Int. Joint Conf. on Artificial Intelligence, IJCAI 2003, pp. 765–771. Morgan Kaufmann, Acapulco (2003)Google Scholar
  7. 7.
    Estivill-Castro, V., Parsa, M.: The parameterized complexity of uniform Nash equilibria in win-lose games (submitted for publication)Google Scholar
  8. 8.
    Estivill-Castro, V., Parsa, M.: Computing Nash equilibria gets harder— new results show hardness even for parameterized complexity. In: Downey, R., Manyem, P. (eds.) The Australasian Theory Symposium (CATS 2009). CRPIT, vol. 94. Australian Computer Society, Inc., Wellington (2009)Google Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. Theoretical Computer Science 410(36), 3305–3326 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gassner, E., Hatzl, J., Krumke, S., Sperber, H., Woeginger, G.: How hard is it to find extreme Nash equilibria in network congestion games?. Theoretical Computer Science 410(47-49), 4989–4999 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games and Economic Behavior 1(1), 80–93 (1989)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hermelin, D., Huang, C.C., Kratsch, S., Wahlstrom, M.: Parameterized two-player Nash equilibrium, personal communicationGoogle Scholar
  13. 13.
    von Stengel, B.: Computing equilibria for two-person games. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory. ch.45, vol. 3, pp. 1723–1759. Elsevier, Amsterdam (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vladimir Estivill-Castro
    • 1
  • Mahdi Parsa
    • 1
  1. 1.School of ICTGriffith UniversityQueenslandAustralia

Personalised recommendations