Advertisement

Upper and Lower I/O Bounds for Pebbling r-Pyramids

  • Desh Ranjan
  • John Savage
  • Mohammad Zubair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

Modern computers have several levels of memory hierarchy. To obtain good performance on these processors it is necessary to design algorithms that minimize I/O traffic to slower memories in the hierarchy. In this paper, we present I/O efficient algorithms to pebble r-pyramids and derive lower bounds on the number of I/O steps to do so. The r-pyramid graph models financial applications which are of practical interest and where minimizing memory traffic can have a significant impact on cost saving.

Keywords

Memory hierarchy I/O Lower bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach. Morgan Kaufmann, San Francisco (2007)zbMATHGoogle Scholar
  2. 2.
    Kumar, V., Sameh, A., Grama, A., Karypis, G.: Architecture, algorithms and applications for future generation supercomputers. In: Proceedings of the 6th Symposium on the Frontiers of Massively Parallel Computation, FRONTIERS 1996, Washington, DC, USA, p. 346. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  3. 3.
    Savage, J.E.: Extending the Hong-Kung model to memory hierarchies. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 270–281. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison Wesley, Reading (1998)zbMATHGoogle Scholar
  5. 5.
    Hong, J.W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: Proc. 13th Ann. ACM Symp. on Theory of Computing, pp. 326–333 (1981)Google Scholar
  6. 6.
    Kwok, Y.: Mathematical Models of Financial Derivatives. Springer, Singapore (1998)zbMATHGoogle Scholar
  7. 7.
    Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: A simplified approach. Journal of Financial Economics 7(3), 229–263 (1979)CrossRefzbMATHGoogle Scholar
  8. 8.
    Savage, J.E., Zubair, M.: Cache-optimal algorithms for option pricing. ACM Trans. Math. Softw. 37(1), 1–30 (2010)CrossRefGoogle Scholar
  9. 9.
    Savage, J.E., Zubair, M.: Evaluating multicore algorithms on the unified memory model. Scientific Programming 17(4), 295–308 (2009)CrossRefGoogle Scholar
  10. 10.
    Cook, S.A.: An observation on storage-time trade off. J. Comp. Systems Sci. 9, 308–316 (1974)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Desh Ranjan
    • 1
  • John Savage
    • 2
  • Mohammad Zubair
    • 1
  1. 1.Old Dominion UniversityNorfolkUSA
  2. 2.Brown UniversityProvidenceUSA

Personalised recommendations