Cahn-Hilliard Generalized Diffusion Modeling Using the Natural Element Method

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 7)


In this work, we present an application of two versions of the natural element method (NEM) to the Cahn-Hilliard equation. The Cahn-Hilliard equation is a nonlinear fourth order partial differential equation, describing phase separation of binary mixtures. Numerical solutions requires either a two field formulation with C 0 continuous shape functions or a higher order C 1 continuous approximations to solve the fourth order equation directly. Here, the C 1 NEM, based on Farin’s interpolant is used for the direct treatment of the second order derivatives, occurring in the weak form of the partial differential equation. Additionally, the classical C 0 continuous Sibson interpolant is applied to a reformulation of the equation in terms of two coupled second order equations. It is demonstrated that both methods provide similar results, however the C 1 continuous version needs fewer degrees of freedom to capture the contour of the phase boundaries.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cahn, JW.: Free energy of a non uniform system ii: thermodynamic basis. J. Chem. Phys. 30, 1121–1124 (1959)CrossRefGoogle Scholar
  2. 2.
    Falk, F.: Cahn-Hilliard theory and irreversible thermodynamics. J. Non-Equilib. Thermodyn. 17(1), 53–65 (1992)CrossRefGoogle Scholar
  3. 3.
    Dolcetta, IC., Vita, SF., March, R.: Area preserving curve shortening flows: from phase transitions to image processing. Interfaces Free Boundaries 4(4), 325–343 (2002)CrossRefGoogle Scholar
  4. 4.
    Kuhl, E., Schmid, DW.: Computational modeling of mineral unmixing and growth- an application of the Cahn-Hilliard equation. Comput. Mech. 39, 439–451 (2007)CrossRefGoogle Scholar
  5. 5.
    Khain, E., Sander, LW.: Generalized Cahn-Hilliard equation for biological applications. Phys. Rev. Lett. E 77(5), 1–7 (2008)Google Scholar
  6. 6.
    Wu, XF., Dzenis, WA.: Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin film under inplanar electric field. Phys. Rev. Lett. E 77(3,4), 1–10 (2008)Google Scholar
  7. 7.
    Ostwald, W.: Ăśber die vermeintliche Isometrie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 6, 495–503 (1900)Google Scholar
  8. 8.
    Rajagopal, A., Fischer, P., Kuhl, E., P. Steinmann, P.: Natural element analysis of the Cahn-Hilliard phase-field model ÂComput. Mech. 46, 471–493 (2010)Google Scholar
  9. 9.
    Stogner, RH., Carey, GF., Murray, BT.: Approximation of Cahn-Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with \(C^1\) elements. Int. J. Numer. Methods Eng. 76, 636–661 (2008)Google Scholar
  10. 10.
    Gomez, H., Calo, VM., Bazilevs, Y., Hughes, TJR.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Meth. Appl. Mech. Eng. 197, 4333–4352 (2008)CrossRefGoogle Scholar
  11. 11.
    Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous galerkin method for Cahn-Hilliard equation. J. Comput. Phys 218, 860–877 (2006)CrossRefGoogle Scholar
  12. 12.
    Elliott, CM.: French DA. A non-conforming finite element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)Google Scholar
  13. 13.
    Ubachs, RLJM., Schreurs, RJG., Geers, MGD.: A nonlocal diffuse interface model for microstructure evolution in tin-lead solder. J. Mech. Phys. Solids 52(8), 1763–1792 (2004)CrossRefGoogle Scholar
  14. 14.
    Farin, G.: Surfaces over Dirichlet tessellations. Comp. Aided Geom. D. 7, 281–292 (1990)CrossRefGoogle Scholar
  15. 15.
    Fischer, P., Mergheim0, J., Steinmann, P.: On the \(C^1\) continuous discretization of nonlinear gradient elasticity: a comparison of NEM and FEM based on Bernstein-Bezier patches. Int. J. Numer. Methods Eng. 82(10), 1282–1307 (2010)Google Scholar
  16. 16.
    Sukumar, N., Moran, B.: \(C^1\) natural neighbor interpolant for partial differential equations. Numer. Meth. Part. D. E. 15, 417–447 (1999)Google Scholar
  17. 17.
    Sibson, R.: A vector identity for the Dirichlet tessellation. Math. Proc. Cambridge 87, 151–153 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chair of Applied MechanicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Departments of Mechanical Engineering, Bioengineering and Cardiothoracic SurgeryStanford UniversityStanfordUSA

Personalised recommendations