Skip to main content

On the Form-Invariance of Lagrangian Function for Higher Gradient Continuum

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 7))

Abstract

In this work, we consider an elastic continuum of third grade. For the sake of simplicity, we do not consider kinetic energy in the Lagrangian function. In this work, we reformulate the problem by considering Lagrangian function depending on the metric tensor \({\mathbf g}\) and on the affine connection \(\nabla\) assumed to be compatible with the metric \({\mathbf g}\), and rewrite the Lagrangian function as \({\fancyscript{L}} ({\mathbf g}, \nabla, \nabla^2).\) Following the method of Lovelock and Rund, we apply the form-invariance requirement to the Lagrangian \({\fancyscript{L}}.\) It is shown that the arguments of the function \({\fancyscript{L}}\) are necessarily the torsion \(\aleph\) and/or the curvature \(\Re\) associated with the connection, in addition to the metric \({\mathbf g}.\) The following results are obtained: (1) \({\fancyscript{L}} ( {\mathbf g}, \nabla )\) is form-invariant if and only if \({\fancyscript{L}} ( {\mathbf g}, \aleph );\) (2) \({\fancyscript{L}} ( {\mathbf g}, \nabla^2 )\) is form-invariant if and only if \({\fancyscript{L}} ( {\mathbf g}, \Re );\) and (3) \({\fancyscript{L}} ( {\mathbf g}, \nabla, \nabla^2 )\) is form-invariant if and only if \({\fancyscript{L}} ( {\mathbf g}, \aleph, \Re ).\)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agiasofitou, EK., Lazar, M.: Conservation and balance laws in linear elasticity. Journal of Elasticity 94, 69–85 (2099)

    Article  Google Scholar 

  2. Betram, A., Svendsen, B.: On Material Objectivity and Reduced Constitutive Equations. Archive of Mechanics 53(6), 653–675 (2001)

    Google Scholar 

  3. Cartan, E.: English translation of the French original. In: Magnon, A., Ashtekar, A. (eds) On manifolds with an affine connection and the theory of general relativity, Bibliopolis, Napoli (1986)

    Google Scholar 

  4. Choquet-Bruhat, Y., De Witt-Morette, C., Dillard-Bleick, M.: Analysis manifolds and physics. North-Holland, New-York (1977)

    Google Scholar 

  5. Cermelli, P., Gurtin, ME.: Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int J of Solids and Struct 39, 6281–6309 (2002)

    Article  Google Scholar 

  6. Ehlers, J.: The nature and concept of spacetime. In: Mehra, J. (eds) The Physicist’s concept of nature., pp. 71–91. Reidel Publishing Compagny, Dordrecht-Holland (1973)

    Google Scholar 

  7. Fleck, NA., Hutchinson, JW.: Strain gradient plasticity. Adv in Appl Mech 33, 295–361 (1997)

    Article  Google Scholar 

  8. Fleck, NA., Hutchinson, JW.: A reformulation of strain gradient plasticity. J Mech Phys Solids 49, 2245–2271 (2001)

    Article  Google Scholar 

  9. Forest S, Cordero NM, Busso EP. (2010) First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Computational Material Sciences (to appear)

    Google Scholar 

  10. Gao, H., Huang, Y., Nix, WD., Hutchinson, JH.: Mechanim-based strain gradient plasticity I : Theory. J Mech Phys Solids 47, 1239–1263 (1999)

    Article  Google Scholar 

  11. Huang, Y., Gao, H., Nix, WD., Hutchinson, JH.: Mechanism-based strain gradient plasticity II Analysis. J Mech Phys Solids 48, 99–128 (2000)

    Article  Google Scholar 

  12. Kleinert, H.: Multivalued Fields: in Condensed matter, Electromagnetism, and Gravitation. World Scientific, Singapore (2008)

    Google Scholar 

  13. Kroener E. (1981) Continuum theory of defects. In: Balian et al (eds) Physique des défauts. Les Houches July 28 – August 29, North-Holland Publishing, pp 219–315

    Google Scholar 

  14. Lazar, M.: An elastoplastic theory of dislocations as a physical field with torsion. Journal Phys A : Math Gen 35, 1983–2004 (2002)

    Article  CAS  Google Scholar 

  15. Lazar, M., Maugin, G., Aifantis, E.: Dislocations in second strain gradient elasticity. Int J of Solids and Struct 43, 1787–1817 (2006)

    Article  Google Scholar 

  16. Le, KC., Stumpf, H.: On the determination of the crystal reference in nonlinear continuum theory of dislocations. Proc R Soc Lond A 452, 359–371 (1996)

    Article  CAS  Google Scholar 

  17. Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principles chap 8. Wiley, New-York (1975)

    Google Scholar 

  18. Lubarda, VA.: The effect of couple stresses on dislocations strain energy. Int J of Solids and Struct 40, 3807–3826 (2003)

    Article  Google Scholar 

  19. Marsden JE., Hughes TJR. (1983) Mathematical foundations of elasticity. Prentice-Hall

    Google Scholar 

  20. Maugin G. (1993) Material Inhomogeneities in Elasticity. Chapman and Hall

    Google Scholar 

  21. Mindlin, RD.: Micro-structure in linear elasticity. Arch Rat Mech Analysis 16, 51–78 (1964)

    Article  Google Scholar 

  22. Mindlin, RD.: Second gradient of strain and surface-tension in linear elasticity. Int J of Solids and Struct 1, 417–438 (1965)

    Article  Google Scholar 

  23. Nakahara, M.: Geometry, Topology and Physics. In: Brewer, DF. (eds) Graduate Student Series in Physics., Institute of Physics Publishing, Bristol (1996)

    Google Scholar 

  24. Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch Rat Mech Analysis 27, 1–32 (1967)

    Article  Google Scholar 

  25. Popov, VL., Kröner, E.: Theory of elastopolastic media with mesostructures. Theoritical and Applied Fracture Mechanics 37, 299–310 (2001)

    Article  Google Scholar 

  26. Rakotomanana, RL.: Contribution à la modélisation géométrique et thermodynamique d’une classe de milieux faiblement continus. Arch Rat Mech Analysis 141, 199–236 (1997)

    Article  Google Scholar 

  27. Rakotomanana, RL.: A geometric approach to thermomechanics of dissipating continua. Birkauser, Boston (2003)

    Book  Google Scholar 

  28. Rakotomanana RL. (2005) Some class of SG continuum models to connect various length scales in plastic deformation. In: Steimann P., Maugin GA. (ed) Mechanics of material forces, chap 32. Springer

    Google Scholar 

  29. Rakotomanana, RL.: Élements de dynamiques des structures et solides déformables. Presses Polytechniques et Universitaires Romandes, Lausanne (2009)

    Google Scholar 

  30. Svendsen, B., Betram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mechanica 132, 195–207 (1999)

    Article  Google Scholar 

  31. Svendsen, B., Neff, P., Menzel, A.: On Constitutive and configurational aspects of models for gradient continua with microstructure. Z Angew Math Mech 89(8), 687–697 (2009)

    Article  Google Scholar 

  32. Toupin, RA.: Elastic materials with couple stresses. Arch Rat Mech Analysis 11, 385–414 (1962)

    Article  Google Scholar 

  33. Wang, CC.: Geometric structure of simple bodies, or mathematical foundation for the theory of continuous distributions of dislocations. Arch Rat Mech Analysis 27, 33–94 (1967)

    Article  Google Scholar 

  34. Zhao, J., Pedroso, D.: Strain gradient theory in orthogonal curvilinear coordinates. Int J of Solids and Struct 45, 3507–3520 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Antonio Tamarasselvame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tamarasselvame, N.A., Rakotomanana, L.R. (2011). On the Form-Invariance of Lagrangian Function for Higher Gradient Continuum. In: Altenbach, H., Maugin, G., Erofeev, V. (eds) Mechanics of Generalized Continua. Advanced Structured Materials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19219-7_15

Download citation

Publish with us

Policies and ethics