Skip to main content

A Historical Perspective of Generalized Continuum Mechanics

  • Chapter
  • First Online:
Mechanics of Generalized Continua

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 7))

Abstract

In a period of forty years the author has had the opportunity to work, or to entertain friendly connections, with many actors of the scene of generalized continuum mechanics (GCM). This training and knowledge here is used to the benefit of the readers as an overview of this scene with the aim to delineate further avenues of development within the framework of the trilateral seminar held in Wittenberg (2010). Starting essentially with Pierre Duhem and the Cosserat brothers, this specialized, albeit vast, field of continuum mechanics has developed by successive abandonments of the working hypotheses at the basis of standard continuum mechanics, that mechanics masterly devised by Euler and Cauchy and some of their successors in the 19th century (Piola, Kirchhoff, etc.). In the present survey we briefly analyze successive steps such as the introduction of nonsymmetric stresses, couple stresses, internal degrees of freedom and microstructure, the introduction of strain gradient theories, and material inhomogeneities with a length scale, nonlocality of the weak and strong types, the loss of Euclidean geometry to describe the material manifold, and finally the loss of classical differentiability of basic operations as can occur in a deformable fractal material object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aero, E.L, Kuvshinskii, E.V: Fundamental equations of the theory of elastic media with rotationally interacting particles. Engl. Transl. Soviet Physics Solid State 2, 1272–1281 (1961) (in Russian, 1960)

    Google Scholar 

  2. Aifantis, E.C: On the microscopic origin of certain inelastic models. Tran ASME J. Engng Mat. Technol. 106, 326–330 (1984)

    Article  CAS  Google Scholar 

  3. Aifantis, E.C: On the role of gradients in the localization of deformation and fracture. Int. J. Engng Sci. 30, 1279–1299 (1992)

    Article  Google Scholar 

  4. Baidakov, V.G, Boltachev, G.Sh, Potsenko, S.P, Chernykh, G.C: The van der Waals theory of capillarity and computer simulation. Colloid J. (transl. from Russ.) 64(6), 661–670 (2002)

    CAS  Google Scholar 

  5. Bilby, B.A: Geometry and continuum mechanics. In: Kröner, E. (eds) Mechanics of generalized continua (Proc. IUTAM Symp. Freudenstadt, 1967), pp. 180–199. Springer-Verlag, Berlin (1968)

    Google Scholar 

  6. Burton, C.V: Theory concerning the constitution of matter. Phil. Mag., 33(201), 191–204 (1891)

    Google Scholar 

  7. Capriz, G.: Continua with microstructure. Springer-Verlag, New York (1989)

    Google Scholar 

  8. Casal, P.: Capillaritéinterne en mécanique. C.R. Acad. Sci. Paris, 256, 3820–3822 (1963)

    Google Scholar 

  9. Christov, C.I, Maugin, G.A, Porubov, A.S: On Boussinesq’s paradigm on nonlinear wave propagation. C.R. Mécanique (Acad. Sci. Paris, Special Issue on Boussinesq) 335(9-10), 521–535 (2007)

    CAS  Google Scholar 

  10. Cosserat, E., Cosserat, F.: Théorie des Corps Déformables. Hermann Editeurs, Paris (1909) (Reprint, Gabay, Paris, 2008)

    Google Scholar 

  11. Cowin, S.C, Nunziato, J.W: Linear elastic materials with voids. J. Elasticity 13, 125–147 (1983)

    Article  Google Scholar 

  12. Cyrot, M.: Ginzburg-Landau theory for superconductors. Report Progress in Physics, 36/2, 103–158 (1973)

    Article  Google Scholar 

  13. Dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and intersticial working allowed by the principle of virtual power. C.R. Acad. Sci. Paris IIb, 321, 303–308 (1995)

    Google Scholar 

  14. Drouot, R., Maugin, G.A: Phenomenological theory for polymer diffusion in non-homogeneous velocity gradient flows. Rheologica Acta 22(4), 336–347 (1983)

    Article  CAS  Google Scholar 

  15. Duhem, P.: Le potentiel thermodynamique et la pression hydrostatique. Ann. Ecol. Norm., 10, 187–230 (1893)

    Google Scholar 

  16. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. der Phy. 49, 769–822 (1916)

    Article  CAS  Google Scholar 

  17. Einstein, A.: The Meaning of relativity. Princeton University Press, Princeton (1956)

    Google Scholar 

  18. Epstein, M., Maugin, G.A: The energy-momentum tensor and material uniformity in finite elasticity. Acta Mechanica 83(3-4), 127–133 (1990)

    Article  Google Scholar 

  19. Epstein, M., Maugin, G.A: Notions of material uniformity and homogeneity (Opening Lecture of MS1, ICTAM, Kyoto, 1996). In: Tatsumi, T., Watanabe, E., Kambe, T. (eds) Theoretical and Applied Mechanics, pp. 201–215. Elsevier, Amsterdam (1997)

    Google Scholar 

  20. Epstein, M., Maugin, G.A: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plasticity 16(7-8), 951–978 (2000)

    Article  Google Scholar 

  21. Ericksen, J.L: Anisotropic fluids. Arch. Rat. Mech. Anal. 4, 231–237 (1960)

    Article  Google Scholar 

  22. Eringen, A.C: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    Google Scholar 

  23. Eringen, A.C: Theory of micropolar elasticity. In: Liebowitz, H. (eds) Fracture: A treatise,, vol. II, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  24. Eringen, A.C: Micropolar fluids with stretch. Int. J. Engng.Sci. 7, 115–127 (1969)

    Article  Google Scholar 

  25. Eringen, A.C: Formulation of micropolar thermoelasticity. CISM Courses and Lectures No. 23, Udine. vol. II, Springer, Vienna (1970)

    Google Scholar 

  26. Eringen, A.C: Microcontinuum field theories, I- Foundations and solids. vol. II, Springer, New York (1999)

    Google Scholar 

  27. Eringen, A.C: Microcontinuum field theories, II- Fluent media. vol. II, Springer, New York (2001)

    Google Scholar 

  28. Eringen, A.C: Nonlocal continuum field theories. vol. II, Springer, New York (2002)

    Google Scholar 

  29. Eringen, A.C, Edelen, D.G.B: On nonlocal elasticity. Int. J. Egng. Sci. 10(3), 233–248 (1972)

    Article  Google Scholar 

  30. Eringen, A.C, Maugin, G.A.: Electrodynamics of continua. vol. 2, Springer-Verlag, New York (1990)

    Google Scholar 

  31. Eringen, A.C, Suhubi, E.S: Nonlinear theory of simple microelastic solids I. Int. J. Engng. Sci. 2(2), 189–203 (1964)

    Article  Google Scholar 

  32. Eringen, A.C, Suhubi, E.S: Nonlinear theory of simple microelastic solids II. Int. J. Engng. Sci. 2(4), 389–404 (1964)

    Article  Google Scholar 

  33. Fleck, N.A, Hutchinson, J.W: A phenomenological theory of strain-gradient effects in plasticity. J. Mech. Phys. Solids, 41, 1825–1857 (1993)

    Article  Google Scholar 

  34. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. In: Advances in Applied Mechanics, ed. J.W. Hutchinson, Vol. 33, pp. 296–361 (1997)

    Google Scholar 

  35. Fleck, N.A, Muller, G.M, Ashby, M.F, Hutchinson, J.W: Strain-gradient plasticity: Theory and Experiment. Acta Metallurgica et Materialia 42, 475–487 (1994)

    Article  CAS  Google Scholar 

  36. Forest, S.: Milieux continus généralisés et matériaux hétérogènes. Presses de l’Ecole des Mines, Paris (2006)

    Google Scholar 

  37. Gauthier, R.D, Jashman, W.E: A quest for micropolar elastic constants. J. Appl. Mech., Trans. ASME Ser E., 42(2), 369–374 (1975)

    Article  Google Scholar 

  38. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus, Première partie: théorie du second gradient. J. de Mécanique (Paris), 12, 235–274 (1973)

    Google Scholar 

  39. Germain, P.: The method of virtual power in continuum mechanics-II: Microstructure. SIAM J. Appl. Math., 25(3), 556–575 (1973)

    Article  Google Scholar 

  40. Green, A.E, Naghdi, P.M: Micropolar and director theories of plates. Quart. J. Mech. Appl. Math., 20, 183–199 (1967)

    Article  Google Scholar 

  41. Green, A.E, Rivlin, R.S: Multipolar continuum mechanics. Arch. Rat. Mech. Anal. 17, 113–147 (1964)

    Article  Google Scholar 

  42. Grioli, G.: Elasticità asimmetrica. Ann. Mat. Pura ed Applicata, Ser. IV, 50, 389–417 (1960)

    Article  Google Scholar 

  43. Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges., 10, 195 (1958)

    Google Scholar 

  44. Hellinger, E.: Die allgemeinen Ansätze der Mechanik der Kontinua. In: Klein, F., Wagner, K. (eds) Enz. Math. Wiss, vol. 4, pp. 602–694. Springer, Berlin (1914)

    Google Scholar 

  45. Kafadar, C.B., Eringen, A.C.: Micropolar media -I- The classical theory. Int. J. Engng. Sci. 9(3), 271–308 (1971)

    Article  Google Scholar 

  46. Kondo, K.: Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. in: RAAG Memoirs of the unifying study of basic problems in engineering and physical sciences by means of geometry, Vol. 1, 459–480, ed. K. Kondo, Gakujutsu Bunken Fukyukai, Tokyo (1955)

    Google Scholar 

  47. Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation de la densité. Arch. Néer. Sci. Exactes et Nat., Série II, 6, 1–24 (1901)

    Google Scholar 

  48. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. vol. 4, Springer-Verlag, Berlin (1958)

    Google Scholar 

  49. Kröner, E. (Editor): Generalized Continua. Proc. IUTAM Symp. Freudenstadt, Springer-Verlag, Berlin (1968)

    Google Scholar 

  50. Kröner, E., Datta, B.K.: Nichtlokal Elastostatik: Ableitung aus der Gittertheorie. Z. Phys. 196(3), 203–211 (1966)

    Article  Google Scholar 

  51. Kunin, I.A.: Model of elastic medium with simple structure and space dispersion. Prikl. Mat. Mekh. 30, 542–550 (1966)

    Google Scholar 

  52. Kunin, I.A.: Elastic media with microstructure I & II. Springer-Verlag, Berlin (1982) (translated from the 1975 Russian edition)

    Google Scholar 

  53. Laval, J.: L’élasticité du milieu cristallin -I. J. Phys. Radium 18(4), 247–259 (1957)

    Article  CAS  Google Scholar 

  54. Laval, J.: L’élasticité du milieu cristallin -II. J. Phys. Radium 18(5), 289–296 (1957)

    Article  CAS  Google Scholar 

  55. Laval, J.: L’élasticité du milieu cristallin -III. J. Phys. Radium 18(6), 369–379 (1957)

    Article  CAS  Google Scholar 

  56. Lazar, M., Maugin, G.A.: Defects in Gradient Micropolar Elasticity. I - Screw Dislocation. J. Mech. Phys. Solids 52, 2263–2284 (2004)

    Article  Google Scholar 

  57. Lazar, M., Maugin, G.A.: Defects in Gradient Micropolar Elasticity. II - Edge dislocation and disclinations. J. Mech. Phys. Solids 52, 2285–2307 (2004)

    Article  Google Scholar 

  58. Lazar, M., Maugin, G.A.: On microcontinuum field theories: The Eshelby stress tensor and incompatibility conditions. Phil. Mag. 87, 3853–3870 (2007)

    Article  CAS  Google Scholar 

  59. Le Corre, Y.: La dissymétrie du tenseur des efforts et ses conséquences. J. Phys. Radium 17(11), 934–939 (1956)

    Article  Google Scholar 

  60. Le Roux, J.: Etude géométrique de la torsion et de la flexion, dans les déformations infinitésimales d’un milieu continu. Ann. Ecole Norm. Sup., 28, 523–579 (1911)

    Google Scholar 

  61. Le Roux, J.: Recherches sur la géométrie des déformations finies. Ann. Ecole Norm. Sup. 30, 193–245 (1913)

    Google Scholar 

  62. Leslie, F.M.: Constitutive equations for liquid crystals. Arch. Rat. Mech. Anal., 28, 265–283 (1968)

    Article  Google Scholar 

  63. Li, J., Ostoja–Starjeswki, M.: Fractals, product measures and continuum mechanics. In: Maugin, G.A., Metrikine, A.V. (eds) Mechanics of Generalized Continua: One hundred years after the Cosserats., vol. 4, pp. 315–323. Springer, New York (2010)

    Google Scholar 

  64. Maugin, G.A.: Micromagnetism and polar media. Ph. D. thesis, Princeton University (1971)

    Google Scholar 

  65. Maugin, G.A.: Nonlocal theories or gradient-type theories: A matter of convenience? Arch. Mechanics (PL, Proc. Euromech Coll. on Nonlocal Theories, Warsaw, 1977), 31(1), 15–26 (1979)

    Google Scholar 

  66. Maugin, G.A.: Method of virtual power in continuum-mechanics: Application to coupled fields. Acta Mechanica 35(1-2), 1–70 (1980)

    Article  Google Scholar 

  67. Maugin, G.A.: Continuum mechanics of electromagnetic solids. North-Holland, Amsterdam (1988)

    Google Scholar 

  68. Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilibrium Thermodynamics 15(2), 173–192 (1990)

    Article  Google Scholar 

  69. Maugin, G.A.: Material inhomogeneities in elasticity. vol. 4, Chapman & Hall, London (1993)

    Google Scholar 

  70. Maugin, G.A.: Nonlinear waves in elastic crystals. vol. 4, Oxford University Press, Oxford (1999)

    Google Scholar 

  71. Maugin, G.A.: Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics. J. Elasticity 71(1-3), 81–103 (2003)

    Article  Google Scholar 

  72. Maugin, G.A.: Geometry and thermomechanics of structural rearrangements: Ekkehart Kroener’s Legacy (GAMM’2002, Kröener’s Lecture, Augsburg, 2002). Z. Angew. Math. Mech. 83(2), 75–84 (2003)

    Article  Google Scholar 

  73. Maugin, G.A.: Generalized continuum mechanics: What do we understand by that? . In: Maugin, G.A., Metrikine, A. V. (eds) Mechanics of Generalized Continua: One hundred years after the Cosserats., vol. 4, pp. 3–13. Springer, New York (2010)

    Google Scholar 

  74. Maugin, G.A.: Configurational forces: Thermomechanics, Mathematics, Physics, Numerics. vol. 4, CRC/Chapman & Hall/Taylor and Francis, Boca Raton, FL, USA (2010)

    Book  Google Scholar 

  75. Maugin G.A., Christov C.I.: Nonlinear waves and conservation laws (Nonlinear duality between elastic waves and quasi-particles). In: Topics in Nonlinear Wave Mechanics, eds. C.I. Christov & A. Guran, pp. 117–160, Birkhäuser, Boston (2002)

    Google Scholar 

  76. Maugin, G.A., Metrikine, A.V. (Eds): Mechanics of Generalized Continua: One hundred years after the Cosserats. Springer, New York (2010)

    Google Scholar 

  77. McCullagh, J.: An essay towards a dynamical theory of crystalline reflexion and refraction. Trans. Roy. Irish Acad. Sci. 21, 17–50 (1839)

    Google Scholar 

  78. Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  Google Scholar 

  79. Mindlin, R.D.: Polarization gradient in elastic dielectric. CISM Courses and Lectures No. 24, Udine. vol. 4, Springer, Vienna (1970)

    Google Scholar 

  80. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Structures 4(1), 109–124 (1968)

    Article  Google Scholar 

  81. Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415–448 (1962)

    Article  Google Scholar 

  82. Neuber, H.: On the general solution of linear elastic problems in isotropic and anisotropic Cosserat continua. In: \(Proc.\) \(11^{\rm th}\) International Conference of Applied Mechanics (München, 1964), ed. H. Görtler, pp. 153–158, Springer-Verlag, Berlin (1964)

    Google Scholar 

  83. Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Rat. Mech. Anal., 27, 1–32 (1967)

    Article  Google Scholar 

  84. Noll, W., Virga, E.G.: On edge interactions and surface tension. Arch. Rat. Mech. Anal., 111, 1–31 (1990)

    Article  Google Scholar 

  85. Nowacki, W.: Theory of micropolar elasticity. CISM Courses and Lectures No. 25, Udine. vol. 4, Springer, Vienna (1970)

    Google Scholar 

  86. Nowacki, W.: Theory of asymmetric elasticity. vol. 4, Pergamon Press, Oxford, U.K (1986)

    Google Scholar 

  87. Palmov, A.: Fundamental equations of the theory of asymmetric elasticity. Prikl. Mat. Mekh. 28, 401–408 (1964)

    Google Scholar 

  88. Pijaudier–Cabot, G., Bazant, Z.P.: Nonlocal damage theory. J. Eng. Mech. ASCE, 113(10), 1512–1533 (1987)

    Article  Google Scholar 

  89. Pouget, J., Maugin, G.A.: Non-linear electroacoustic equations for piezoelectric powders. J. Acoust. Soc. Amer. 74(3), 925–940 (1983)

    Article  Google Scholar 

  90. Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids -I-Basic equations. J. Elasticity, 22(2–3), 135–155 (1989)

    Article  Google Scholar 

  91. Rakotomanana, L.R.: A geometric approach to thermomechanics of dissipating continua. vol. 4, Birkhäuser, Boston (2003)

    Book  Google Scholar 

  92. Rogula, D.: Influence of spatial acoustic dispersion on dynamical properties of dislocations. Bull. Acad. Pol. Sci., Sér. Si. Tecchn., 13, 337–385 (1965)

    Google Scholar 

  93. Rosenbum, P., Li, D.: Ginzburg-Landau theory of type II superconductors in magnetic field. Rev. Modern Physics 82(1), 109–168 (2010)

    Article  Google Scholar 

  94. Schaefer, H.: Das Cosserat-Kontinuum. Z. Angew. Math. Mech. 47, 34 (1967)

    Google Scholar 

  95. Sedov, L.I.: Some problems of designing new models of continuum mechanics. In: \(Proc.\) \(11^{\rm th}\) International Congress of Applied Mechanics (Munich, 1964), ed. H. Görtler, pp. 23–41, Springer, Berlin (1966)

    Google Scholar 

  96. Stojanovic, R.: Mechanics of polar continua. vol. 4, CISM, Udine, Italy (1969)

    Google Scholar 

  97. Stojanovic, R.: Recent developments in the theory of polar continua. CISM Courses and Lectures No. 27, Udine. vol. 4, Springer, Vienna (1970)

    Google Scholar 

  98. Stokes, V.K.: Theories of fluids with microstructure. vol. 4, Springer-Verlag, Berlin (1984)

    Google Scholar 

  99. Tiersten, H.F.: Surface couplings in magnetoelastic insulators. In: Surface Mechanics, 126–143, ASME, N.Y. (1969)

    Google Scholar 

  100. Toupin, R.A.: Elastic materials with couple stress. Arch. Rat. Mech. Anal. 11, 395–414 (1962)

    Article  Google Scholar 

  101. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Rat. Mech. Anal. 17, 85–112 (1964)

    Article  Google Scholar 

  102. Truesdell, C.A., Noll, W.: Nonlinear field theories of mechanics. In: Flügge, S. (eds) Handbuch der Physik, Bd. III/3. , vol. 4, Springer-Verlag, Berlin (1965)

    Google Scholar 

  103. Truesdell, C.A., Toupin, R.A.: The classical theory of fields. In: Flügge, S. (eds) Handbuch der Physik, Bd. III/1., vol. 4, Springer-Verlag, Berlin (1960)

    Google Scholar 

  104. van der Waals, J.D.: The thermodynamic theory of capillarity under the hypotheses of a continous variation of density. Z. f. phys. Chemie 13, (1894)

    Google Scholar 

  105. Wang, C.C.: On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Rat. Mech. Anal. 27, 33–94 (1967)

    Article  Google Scholar 

  106. Whittaker, E.T.: A history of the theories of aether and elasticity. Vol.1 & 2, Thomas Nelson, New York (1951). Reprint in one volume. Dover, New York (1953)

    Google Scholar 

  107. Zbib, H., Aifantis, E.C.: On the gradient-dependent theory of plasticity and shear banding. Acta Mechanica 92, 209–225 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard A. Maugin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maugin, G.A. (2011). A Historical Perspective of Generalized Continuum Mechanics. In: Altenbach, H., Maugin, G., Erofeev, V. (eds) Mechanics of Generalized Continua. Advanced Structured Materials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19219-7_1

Download citation

Publish with us

Policies and ethics