Skip to main content

The Auditory System

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

The ear or vestibulocochlear organ is composed of external, middle and inner parts. The external ear consists of the auricle and the external acoustic meatus with the outer layer of the tympanic membrane. The middle ear is formed by the tympanic cavity, the auditory ossicles and the inner layer of the tympanic membrane. The inner ear comprises the labyrinth, a series of fluid-filled spaces in the petrous part of the temporal bone. The auditory part of the inner ear consists of the cochlea with the organ of Corti, which contains hair cells as auditory receptors (Sect. 7.2). Receptors sensitive to high frequencies are located near the cochlear base and those sensitive to low frequencies near the apex of the cochlea. The hair cells are innervated by the peripheral processes of bipolar ganglion cells in the spiral ganglion. Their central processes form the cochlear division of the vestibulocochlear nerve and terminate in the cochlear nuclei (Sect. 7.3). The principal auditory pathway passes from the cochlea, via the cochlear nuclei, the inferior colliculus and the medial geniculate body (the MGB) to the contralateral auditory cortex on the dorsal surface of the superior temporal gyrus (Sect. 7.4). Each MGB is bilaterally innervated, so that each hemisphere receives cochlear input bilaterally. All of the components of the auditory pathway are tonotopically organized.

At birth, humans have about 20,000 inner and outer hair cells in the organ of Corti, which often do not last a lifetime as they do not regenerate when lost. By the age of 65–75 years, many individuals have a bilateral, high-frequency progressive hearing loss known as presbycusis associated with hair cell attrition. Hair cell loss is the most common cochlear defect causing hearing impairment in presbycusis and noise-induced hearing loss. Hearing disorders due to brain stem lesions are rare because of the bilateral projections of the central auditory pathways. Midline pontine lesions may result in impaired sound localization due to interruption of the input of the superior olivary complex. Disorders of auditory perception may follow strokes in the territory of the internal carotid arteries or of the vertebrobasilar system. The central disorders of auditory perception may result from lesions of either the right and the left or both cerebral hemispheres, usually involving parietotemporal cortical areas as illustrated in Clinical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JC (1986) Neuronal morphology of the human cochlear nucleus. Arch Otol Head Neck Surg 112:1253–1261

    CAS  Google Scholar 

  • Alain C, Arnott SR, Hevenor S, Graham S, Grand CL (2001) ‘What’ and ’where’ in the human auditory system. Proc Natl Acad Sci USA 98:12301–12306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Augustin J, Guegan-Massardier E, Levillain D et al (2001) Musical hallucinosis following infarction of the right middle cerebral artery. Rev Neurol (Paris) 157:289–292

    CAS  Google Scholar 

  • Ayotte J, Peretz I, Hyde K (2000) Congenital amusia: a group study of adults afflicted with a music-specific disorder. Brain 125:238–251

    Google Scholar 

  • Bendor D, Wang X (2006) Cortical representations of pitch in monkeys and humans. Curr Opin Neurobiol 16:391–399

    CAS  PubMed  Google Scholar 

  • Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jasmanowicz A, Bandettini PA et al (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35:662–672

    CAS  PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362

    CAS  PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellrowan PSF, Springer JA, Kaufman JN, Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528

    CAS  PubMed  Google Scholar 

  • Borg E (1973) On the neuronal organization of the acoustic middle ear reflex. A physiological and anatomical study. Brain Res 49:101–123

    CAS  PubMed  Google Scholar 

  • Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol, Suppl 236:1–135

    Google Scholar 

  • Brodal A (1981) Neurological Anatomy, in relation to clinical medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Brödel M (1946) Three unpublished drawings of the anatomy of the human ear. Saunders, Philadelphia, PA

    Google Scholar 

  • Brodmann K (1908) Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die Cortexgliederung des Menschen. J Psychol Neurol (Lpz) 10:231–246

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig, English translation by LJ Garey (1999) Brodmann’s Localisation in the Cerebral Cortex. Imperial College Press, London

    Google Scholar 

  • Burton H, Jones EG (1976) The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol 168:249–301

    CAS  PubMed  Google Scholar 

  • Cambier J, Decroix JP, Masson C (1987) Auditory hallucinations in lesions of the brain stem. Rev Neurol (Paris) 150:255–262

    Google Scholar 

  • Casseday JH, Neff WD (1975) Auditory localization: role of auditory pathways in the brain stem of the cat. J Neurophysiol 38:852–858

    Google Scholar 

  • Chiry O, Tardif E, Magistretti PJ, Clarke S (2003) Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci 17:397–410

    PubMed  Google Scholar 

  • Clarke S, Bellmann-Thiran A, Maeder P, Adriani M, Vernet O, Regli L et al (2002) What and where inhuman audition: Selective deficits following focal hemispheric lesions. Exp Brain Res 147:8–15

    PubMed  Google Scholar 

  • Corwin JT, Warchol ME (1991) Auditory hair cells: structure, function, development, and regeneration. Annu Rev Neurosci 14:301–333

    CAS  PubMed  Google Scholar 

  • Dejerine J (1895) Anatomie des centres nerveux, Tome 1. Reuff, Paris

    Google Scholar 

  • Di Salle F, Formisano E, Seifritz E, Linden DE, Scheffler SC et al (2001) Functional fields in human auditory cortex revealed by time-resolved fMRI without interference of EPI noise. Neuroimage 13:328–338

    PubMed  Google Scholar 

  • Dorsaint-Pierre R, Penhune VB, Watkins KE, Neelin P, Lerch JP, Bouffard M et al (2006) Asymmetries of the planum temporale and Heschl’s gyrus: relationship to language lateralization. Brain 129:1164–1176

    PubMed  Google Scholar 

  • Duvernoy HM (1995) The human brain stem and cerebellum: surface, structure, vascularization and three-dimensional sectional anatomy with MRI. Springer, New York

    Google Scholar 

  • Elberling C, Bak C, Kofoed B, Lebech J, Saermark K (1982) Auditory magnetic fields. Source localization and tonotopic organization in the right hemisphere of human brain. Scand Audiol 10:203–207

    Google Scholar 

  • Evers S, Ellger T (2004) The clinical spectrum of musical hallucinations. J Neurol Sci 227:55–65

    PubMed  Google Scholar 

  • Ferrier D (1875) Experiments on the brain of monkeys. Proc R Soc Lond B23:409–432

    Google Scholar 

  • Fisher CM, Tapia J (1987) Lateral medullary infarction extending to the lower pons. J Neurol Neurosurg Psychiatry 50:620–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • FitzPatrick KS, Imig IJ (1980) Auditory cortico-cortical connections in the owl monkey. J Comp Neurol 192:589–610

    CAS  PubMed  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmark des Menschen aufgrund entwicklungsgeschichtlicher Untersuchun­gen. Engelmann, Leipzig

    Google Scholar 

  • Flock Å (1980) Contractile proteins in hair cells. Hear Res 2:411–412

    CAS  PubMed  Google Scholar 

  • Flock Å, Flock B, Fridberger A, Scarfone E, Ulfendahl M (1999) Supporting cells contribute to control of hearing sensitivity. J Neurosci 19:4498–4507

    CAS  PubMed  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Uğurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869

    CAS  PubMed  Google Scholar 

  • Frost JA, Binder JR, Springer JA, Hammeke TA, Bellrowan PS, Rao SM, Cox RW (1999) Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain 122:190–208

    Google Scholar 

  • Fukutake T, Hattori T (1998) Auditory illusions caused by a small lesion in the right medial geniculate body. Neurology 51:1469–1471

    CAS  PubMed  Google Scholar 

  • Furst M, Aharonson V, Levine RA, Fullerton BC, Tadmar R, Pratt H et al (2000) Sound lateralization and interareal discrimination. Effects of brainstem infarcts and multiple sclerosis lesions. Hear Res 143:29–42

    CAS  PubMed  Google Scholar 

  • Galaburda A, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221:169–184

    CAS  PubMed  Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610

    CAS  PubMed  Google Scholar 

  • Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus. Acta Otolaryngol, Suppl 295:1–33

    Google Scholar 

  • Geschwind N, Galaburda AM (1985) Cerebral localization: Biological mechanisms, associations, and pathology I. A hypothesis and a program for research. Arch Neurol 42:428–459

    CAS  PubMed  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in the temporal speech region. Science 161:186–187

    CAS  PubMed  Google Scholar 

  • Griffiths TD (2000) Musical hallucinosis in acquired deafness: phenomenology and substrate. Brain 123:2065–2076

    PubMed  Google Scholar 

  • Griffiths TD, Bench CJ, Frackowiak RSJ (1994) Human cortical areas selectively activated by apparent sound movement. Curr Biol 4:892–895

    CAS  PubMed  Google Scholar 

  • Griffiths TD, Rees A, Witton C, Shakir RA, Henning GB, Green GGR (1996) Evidence for a sound movement area in the human cerebral cortex. Nature 3:425–427

    Google Scholar 

  • Griffiths TD, Bates D, Rees A, Witton C, Gholkar A, Green GGR (1997a) Sound movement detection deficit due to a brainstem lesion. J Neurol Neurosurg Psychiatry 62:522–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths TD, Rees A, Witton C, Cross PM, Shakir RA, Green GGR (1997b) Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study. Brain 120:785–794

    PubMed  Google Scholar 

  • Griffiths TD, Rees G, Rees A, Green GGR, Witton C, Rowe D et al (1998) Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1:74–79

    CAS  PubMed  Google Scholar 

  • Griffiths TD, Green GGR, Rees A, Rees G (2000) Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp 9:72–80

    CAS  PubMed  Google Scholar 

  • Hackett TA, Kaas JH (2004) Auditory cortex in primates: Functional subdivisions and processing streams. In: Galaburda A (ed) The cognitive neuroscience III. MIT, Cambridge, MA, pp 215–232

    Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1998a) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495

    CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1998b) Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 400:271–286

    CAS  PubMed  Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222

    CAS  PubMed  Google Scholar 

  • Hari R, Hämäläinen M, Kaukoranta E, Mäkelä J, Joutsiniemi S-L, Tiikonen J (1989) Selective listening modifies activity of the human auditory cortex. Exp Brain Res 74:463–470

    CAS  PubMed  Google Scholar 

  • Hashikawa T, Molinari M, Rausell E, Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362:195–208

    CAS  PubMed  Google Scholar 

  • Hayes D, Jerger J (1981) Patterns of acoustic reflex and auditory brainstem response abnormality. Acta Otolaryngol 92:199–209

    CAS  PubMed  Google Scholar 

  • Heffner HE, Heffner RS (1990) Effect of bilateral auditory cortex lesions on absolute thresholds in Japanese macaques. J Neurophysiol 64:191–205

    CAS  PubMed  Google Scholar 

  • Heiss W-D, Karbe H, Weber-Luxemburger G, Herholz K, Kessler J, Pietrzyk U, Pawlik G (1997) Speech-induced cerebral metabolic activation reflects recovery from aphasia. J Neurol Sci 145:213–217

    CAS  PubMed  Google Scholar 

  • Henschen SE (1920) Über die Hörsphäre. J Psychol Neurol (Lpz) 22:319–473

    Google Scholar 

  • Hinojosa R, Seligsohn R, Lerner SA (1985) Ganglion cell counts in the cochleae of patients with normal audiograms. Acta Otolaryngol 99:8–13

    CAS  PubMed  Google Scholar 

  • Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994

    PubMed  Google Scholar 

  • Howard MA, Vokov IO, Abbas PJ, Damasio H, Ollendiek MC, Granner MA (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res 724:260–264

    CAS  PubMed  Google Scholar 

  • Huang MH, Huang CC, Ryu SJ, Chu NS (1993) Sudden bilateral hearing impairment in vertebrobasilar occlusive disease. Stroke 24:132–137

    CAS  PubMed  Google Scholar 

  • Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in the central auditory system. J Neurophysiol 47:987–1016

    CAS  PubMed  Google Scholar 

  • Jewett RL, Romano MN, Williston JS (1970) Human auditory evoked potentials: Possible brain stem components detected on the scalp. Science 167:1517–1518

    CAS  PubMed  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    CAS  PubMed  Google Scholar 

  • Jones EG, Dell’Anna ME, Molinari M, Rausell E, Hashikawa T (1995) Subdivisions of macaque monkey auditory cortex revealed by ­calcium-binding protein immunoreactivity. J Comp Neurol 362:153–170

    CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97:11793–11799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaga K (2009) Central auditory pathway disorders. Springer, Tokyo

    Google Scholar 

  • Kaga K, Iwasaki S, Tamura A, Suzuki J-I, Haebara H (1997) Temporal bone pathology of acoustic neuroma correlating with presence of electrocochleography and absence of auditory brainstem response. J Laryngol Otol 111:967–972

    CAS  PubMed  Google Scholar 

  • Kaga K, Shindo M, Tanaka Y, Haebara H (2000) Neuropathology of auditory agnosia following bilateral temporal lobe lesions: A case study. Acta Otolaryngol 120:259–262

    CAS  PubMed  Google Scholar 

  • Kaga K, Kurauchi T, Nakamura M, Shindo M, Ishii K (2005) Magneto-encephalography and positron emission tomography studies of a patient with auditoryagnosia caused by bilateral lesions confined to the auditory radiations. Acta Otolaryngol 125:1351–1355

    PubMed  Google Scholar 

  • Kasai H, Asada T, Yumoto M, Jakeya J, Matsuda H (1999) Evidence for functional abnormality in the right auditory cortex during musical hallucinations. Lancet 354:1703–1705

    CAS  PubMed  Google Scholar 

  • Kim H-N, Kim YH, Park IY, Kim GR, Chung IH (1990) Variability of the surgical anatomy of the neurovascular complex of the cerebellopontine angle. Ann Otol Rhinol Laryngol 99:288–295

    CAS  PubMed  Google Scholar 

  • Kimura RS (1975) The ultrastructure of the organ of Corti. Int Rev Cytol 42:173–222

    CAS  PubMed  Google Scholar 

  • Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316

    CAS  PubMed  Google Scholar 

  • Lauter JL, Herscovitch P, Formby C, Raichle ME (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20:199–205

    CAS  PubMed  Google Scholar 

  • Lechevalier B, Eustache F, Rossa Y (1985) Les troubles de la perception de la musique d’origine neurologique. Masson, Paris

    Google Scholar 

  • Lechevalier B, Lambert J, Moreau S, Platel H, Viader F (2007) Auditory disorders related to strokes. In: Godefroy O, Bogousslavsky J (eds) The behavioral and cognitive neurology of stroke. Cambridge University Press, Cambridge, pp 348–368

    Google Scholar 

  • Lee CC, Winer JA (2005) Principles governing auditory cortex connections. Cereb Cortex 15:1804–1814

    PubMed  Google Scholar 

  • Lee CC, Schreiner CE, Imaizumi K, Winer JA (2004) Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 128:871–887

    CAS  PubMed  Google Scholar 

  • Le Gros Clark WE, Russell WR (1938) Cortical deafness without aphasia. Brain 61:375–383

    Google Scholar 

  • Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: Where is it? Cereb Cortex 8:397–406

    CAS  PubMed  Google Scholar 

  • Levine RA, Häusler R (2001) Auditory disorders in stroke. In: Bogousslavsky J, Caplan LR (eds) Stroke Syndromes, 2nd edn. Cambridge University Press, Cambridge, pp 144–161

    Google Scholar 

  • Liégeois-Chauvel C, Peretz I, Babaï M, Laguitton V, Chauvel P (1998) Contribution of different cortical areas in the temporal lobes to music processing. Brain 121:1853–1867

    PubMed  Google Scholar 

  • Liepmann H, Storch E (1902) Der mikroskopische Gehirnbefund bei dem Fall Gorstelle. Monatsschr Psychiatr Neurol 11:115–120

    Google Scholar 

  • Lockwood AH, Salvi RJ, Coad ML, Arnold SA, Wack DS, Murphy BW, Burkard RF (1999) The functional anatomy of the normal human auditory system: Responses to 0.5 and 4.0 kHz tones at varied intensities. Cereb Cortex 9:65–76

    CAS  PubMed  Google Scholar 

  • Lorente de Nó R (1933) Anatomy of the eighth nerve. The central projections of the nerve endings of the internal ear. Laryngoscope 43:1–38

    Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. J Comp Neurol 285:487–513

    CAS  PubMed  Google Scholar 

  • Lutkenhoner B, Steinstrater O (1998) High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neuro-Otol 3:191–213

    CAS  Google Scholar 

  • Lyon MJ (1978) The central localization of the motor neurons to the stapedius muscle in the cat. Brain Res 143:437–444

    CAS  PubMed  Google Scholar 

  • Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP et al (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816

    CAS  PubMed  Google Scholar 

  • Martin WH, Pratt H, Schweigler JW (1995) The origin of the human auditory brain stem response wave II. Electroencephalogr Clin Electrophysiol 96:357–370

    CAS  Google Scholar 

  • Mesulam M-M, Pandya DN (1973) The projections of the medial geniculate complex within the Sylvian fissure of the rhesus monkey. Brain Res 60:315–333

    CAS  PubMed  Google Scholar 

  • Mizuno N, Nomura S, Konishi A, Uemura-Sumi M, Takahashi O, Yasui Y et al (1982) Localization of motoneurons innervating the tensor tympani muscle: a horseradish peroxidase study in the guinea pig and cat. Neurosci Lett 31:205–208

    CAS  PubMed  Google Scholar 

  • Moller AR, Jannetta PJ (1982) Auditory evoked potentials recorded intracranially from the brainstem in man. Exp Neurol 78:144–157

    CAS  PubMed  Google Scholar 

  • Moore JK (1987) The human auditory brain stem. A comparative view. Hear Res 29:1–32

    CAS  PubMed  Google Scholar 

  • Moore JK (2000) Organization of the human superior olivary complex. Microsc Res Tech 51:403–412

    CAS  PubMed  Google Scholar 

  • Moore JK, Linthicum FH Jr (2004) Auditory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1241–1279

    Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    CAS  PubMed  Google Scholar 

  • Moore JK, Ponton CW, Eggermont JJ, Wu BJ-C, Huang JQ (1996) Perinatal maturation of the auditory brainstem response: Changes in path length and conduction velocity. Ear Hear 17:411–418

    CAS  PubMed  Google Scholar 

  • Moore JK, Simmons DD, Guan Y-L (1999) The human olivocochlear system: organization and development. Audiol Neuro-Otol 4:311–325

    CAS  Google Scholar 

  • Morel A, Kaas JH (1992) Subdivision and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63

    CAS  PubMed  Google Scholar 

  • Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459

    CAS  PubMed  Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701

    CAS  PubMed  Google Scholar 

  • Moskowitz N, Liu JC (1972) Central projections of the spiral ganglion of the squirrel monkey. J Comp Neurol 144:335–344

    CAS  PubMed  Google Scholar 

  • Mummery CJ, Ashburner J, Scott SK, Wise RJS (1999) Functional neuroimaging of speech perception in six normal and two aphasic subjects. J Acoust Soc Am 106:449–457

    CAS  PubMed  Google Scholar 

  • Nadol JB Jr (1990) Synaptic morphology of inner and outer hair cells of the human organ of Corti. J Electron Microsc Tech 15:187–196

    PubMed  Google Scholar 

  • Nakahara H, Yamada S, Mizutani T, Murayama S (2000) Identification of the primary auditory field in archival human brain tissue via immunocytochemistry of parvalbumin. Neurosci Lett 286:29–32

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1984) Anatomy of the auditory pathways, with emphasis on the brain stem. Adv Oto-Rhino-Laryngol 34:25–38

    CAS  Google Scholar 

  • Oas JG, Baloh RW (1992) Vertigo and the anterior inferior cerebellar artery syndrome. Neurology 42:2274–2279

    CAS  PubMed  Google Scholar 

  • Ottaviani F, Di Girolomo S, Briglia G, De Rossi G, Di Giuda D, Di Nardo W (1997) Tonotopic organization of human uditory cortex analyzed by SPET. Audiology 36:241–248

    CAS  PubMed  Google Scholar 

  • Pandya DN, Rosene DL (1993) Laminar termination patterns of thalamic, callosal, and association afferents in the primary auditory area of the rhesus monkey. Exp Neurol 119:220–234

    CAS  PubMed  Google Scholar 

  • Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z Anat Entwickl-Gesch 139:127–161

    CAS  Google Scholar 

  • Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G, Elbert T (1995) Specific tonotopic organization of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94:26–40

    CAS  PubMed  Google Scholar 

  • Pasman JW (1997) Auditory Evoked Responses in Preterm Infants. Thesis, University of Nijmegen

    Google Scholar 

  • Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776

    CAS  PubMed  Google Scholar 

  • Penagos H, Melcher JR, Oxenham AJ (2004) A neural representation of pitch salience in non-primary auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 24:6810–6815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemi­spheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672

    CAS  PubMed  Google Scholar 

  • Peretz I (2001) Brain specialization for music: new evidence from congenital amusia. Ann N Y Acad Sci 930:153–165

    CAS  PubMed  Google Scholar 

  • Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. Abh math phys Kl Sächs Akad Wiss 37:1–54

    Google Scholar 

  • Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RSJ et al (1997) The structural components of music perception: a functional anatomical study. Brain 120:229–243

    PubMed  Google Scholar 

  • Platel H, Baron JC, Desgranges B, Bernard F, Eustache F (2003) Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage 20:244–256

    PubMed  Google Scholar 

  • Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: Implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    CAS  PubMed  Google Scholar 

  • Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H-J, Zilles K (2001a) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13:669–683

    CAS  PubMed  Google Scholar 

  • Rademacher J, Morosan P, Schleicher A, Freund H-J, Zilles K (2001b) Human primary auditory cortex in women and men. Neuroreport 12:1561–1566

    CAS  PubMed  Google Scholar 

  • Rademacher J, Bürgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. Neuroimage 17:142–160

    CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rauschecker JP, Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 91:2578–2589

    PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103

    CAS  PubMed  Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbelthiere, vol II. Samson and Wallin, Stockholm

    Google Scholar 

  • Roeser RJ, Daly DD (1974) Auditory cortex disconnection associated with thalamic tumor. A case report. Neurology 24:555–559

    CAS  PubMed  Google Scholar 

  • Romanski LM, Bates JF, Goldman-Rakic PS (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157

    CAS  PubMed  Google Scholar 

  • Ross ED, Jossman PB, Bell B, Sabin T, Geschwind N (1975) Musical hallucinations in deafness. J Am Med Assoc 231:620–622

    CAS  Google Scholar 

  • Sacks O (2007) Musicophilia. Tales of music and the brain. Knopf, New York

    Google Scholar 

  • Scheich H, Baumgart F, Gaschler-Markefski B, Tegeler C, Tempelmann C, Heinze HJ et al (1998) Functional magnetic resonance imaging of a human auditory cortex area involved in foreground-background decomposition. Eur J Neurosci 10:803–809

    CAS  PubMed  Google Scholar 

  • Scherg M, von Cramon D (1985) A new interpretation of the generators of BAEP waves I-V: Results of spatiotemporal dipole modeling. Electroencephalogr Clin Neurophysiol 62:290–299

    CAS  PubMed  Google Scholar 

  • Schlaug G, Jäncke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267:699–701

    CAS  PubMed  Google Scholar 

  • Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ et al (2005) Structure and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8:1241–1247

    CAS  PubMed  Google Scholar 

  • Schuknecht HF (1993) Pathology of the ear, 2nd edn. Lea and Febiger, Philadelphia, PA

    Google Scholar 

  • Schuknecht HF, Churchill JA, Doran R (1959) The localization of acetylcholinesterase in the cochlea. Arch Otolaryngol 69:549–559

    CAS  Google Scholar 

  • Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149:1–24

    CAS  PubMed  Google Scholar 

  • Shaw M, Baker R (1983) The locations of stapedius and tensor tympani motoneurons in the cat. J Comp Neurol 216:10–19

    CAS  PubMed  Google Scholar 

  • Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467

    CAS  PubMed  Google Scholar 

  • Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 143:25–38

    Google Scholar 

  • Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Genet 27:143–149

    CAS  PubMed  Google Scholar 

  • Steinmetz H, Rademacher J, Huang Y, Hefter H, Zilles K, Thron A, Freund H-J (1989) Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr 13:996–1005

    CAS  PubMed  Google Scholar 

  • Steinmetz H, Volkmann J, Jäncke L, Freund H-J (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Ann Neurol 29:315–319

    CAS  PubMed  Google Scholar 

  • Stockard JJ, Stockard JE, Sherbrough FW (1978) Nonpathologic factors influencing brainstem auditory evoked potentials. Am J EEG Technol 18:177

    Google Scholar 

  • Stockard JJ, Stockard JE, Sherbrough FW (1986) Brainstem auditory evoked potentials in neurology: Methodology, interpretation, and clinical application. In: Aminoff MJ (ed) Electrodiagnosis in clinical neurology, 2nd edn. Churchill Livingstone, New York

    Google Scholar 

  • Stone JS, Oesterle EC, Rubel EW (1998) Recent insights into regeneration of auditory and vestibular hair cells. Curr Opin Neurol 11:17–24

    CAS  PubMed  Google Scholar 

  • Strominger NL (1973) The origin, course and distribution of the dorsal and intermediate acoustic striae in the rhesus monkey. J Comp Neurol 147:209–234

    CAS  PubMed  Google Scholar 

  • Strominger NL, Nelson LR, Dougherty WJ (1977) Second-order auditory pathways in the chimpanzee. J Comp Neurol 172:349–365

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Kano T, Yoshida M, Yamadori A (1991) “So-called” cortical deafness. Clinical, neurophysiological and radiological observations. Brain 114:2385–2401

    PubMed  Google Scholar 

  • Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: A tracing study with DiI. Eur J Neurosci 13:1045–1050

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Cruysberg JRM, Cremers CWJR (2006) Development and developmental disorders of the brain stem. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: Development and developmental disorders of the human central nervous system. Springer, Heidelberg, pp 269–308

    Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Maarssen, Elsevier, pp 981–1141 (in Dutch)

    Google Scholar 

  • Terr LI, Edgerton BJ (1985) Three-dimensional reconstruction of the cochlear nuclear complex in humans. Arch Otolaryngol 111:495–501

    CAS  PubMed  Google Scholar 

  • Thompson GC, Masterton RB (1978) Brainstem auditory pathways involved in reflexive head orientation to sound. J Neurophysiol 45:1183–1202

    Google Scholar 

  • Tian B, Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 92:2993–3013

    PubMed  Google Scholar 

  • Trojanowski JQ, Jacobson S (1975) Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkeys. J Comp Neurol 169:371–392

    Google Scholar 

  • Upadhyay J, Ducros M, Knaus TA, Lindgren KA, Silver A, Tager-Flusberg H, Kim D-S (2007) Function and connectivity in human primary auditory cortex: A combined fMRI and DTI study at 3 Tesla. Cereb Cortex 17:2420–2432

    PubMed  Google Scholar 

  • von Economo C, Horn L (1930) Über Windungsrelief, Maβe und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Z Neurol Psychiatr 130:678–757

    Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Heidelberg, English translation by LC Triarhou (2008) Atlas of cytoarchitectonics of the adult human cerebral cortex. Karger, Basel

    Google Scholar 

  • Wallace MN, Johnson PW, Palmer AR (2002) Histochemical identification of cortical areas in the auditory region of the human brain. Exp Brain Res 143:499–508

    CAS  PubMed  Google Scholar 

  • Weeks RA, Aziz-Sultan A, Bushara KO, Tian B, Wessinger CM, Dang N et al (1999) A PET study of human auditory spatial processing. Neurosci Lett 262:155–158

    CAS  PubMed  Google Scholar 

  • Weiller C, Isensee C, Rijntjes M, Huber W, Müller S, Bier D et al (1995) Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol 37:723–732

    CAS  PubMed  Google Scholar 

  • Wessinger CM, Buonocore MH, Kussmaul CL, Mangun R (1997) Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Hum Brain Mapp 5:18–25

    CAS  PubMed  Google Scholar 

  • Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13:1–7

    CAS  PubMed  Google Scholar 

  • Westerhausen R, Grüner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329

    PubMed  Google Scholar 

  • Winer JA (1984) The human medial geniculate body. Hear Res 15:225–247

    CAS  PubMed  Google Scholar 

  • Woods RP (1996) Correlation of brain structure and function. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, San Diego, CA, pp 313–341

    Google Scholar 

  • Zatorre RJ, Binder JR (2000) Functional and structural imaging of the human auditory system. In: Toga AW, Mazziotta JC (eds) Brain mapping: the systems. Academic, San Diego, CA, pp 365–402

    Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E, Giedde A (1992) Lateralization of phonetic and pitch discrimination in speech processing. Science 256:846–849

    CAS  PubMed  Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14:1908–1919

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2011). The Auditory System. In: Clinical Neuroanatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19134-3_7

Download citation

Publish with us

Policies and ethics