Skip to main content

The Cerebral Cortex and Complex Cerebral Functions

  • Chapter
  • First Online:
Book cover Clinical Neuroanatomy

Abstract

The cerebral cortex can be divided into a large isocortex or neocortex, a smaller allocortex (the hippocampal formation and the olfactory cortex) and a transition zone (the mesocortex) in between. The heterogeneous allocortex and the mesocortex have been discussed in Chap. 14. The various parts of the neocortex show large variations in the development of their constituent layers. The cortical areas that receive the primary sensory pathways via the thalamus form the granular cortex, in which layers II and IV are especially well developed. In the motor cortex, these layers are poorly developed (the agranular cortex), whereas the pyramidal layers III and V are well developed. Based on such differences in cytoarchitecture, Brodmann, the Vogts, von Economo and Koskinas and Sarkissov et al. published their brain maps (see Sect. 15.2). The various cortical lobes and areas will be briefly discussed in Sect. 15.3.

The neocortex is the end station of all sensory projections from the thalamus and has extensive corticofugal projections via the internal capsule to the basal ganglia, the thalamus, the brain stem and the spinal cord. These connections have been extensively discussed in previous chapters. In this chapter, emphasis is on corticocortical projections (Sect. 15.4), hemispheric differences (Sect. 15.5), language and the brain (Sect. 15.6) and disorders of cortical connectivity, known as disconnection syndromes (Sect. 15.7). Classic disconnection syndromes were described in the late nineteenth century by Wernicke, Lissauer, Liepmann and Dejerine and include conduction aphasia, associative visual agnosia, apraxia and alexia without agraphia. In 1965, Norman Geschwind re-introduced the disconnection paradigm and, more recently, other disorders such as visual amnesia and prosopagnosia have also been attributed to disconnection mechanisms. The hodological paradigm may be extended beyond the classic disconnection syndromes by including disorders of hyperconnectivity. The term hodological syndromes was introduced to refer to cognitive and behavioural dysfunctions arising from pathologies of white matter pathways, irrespective of whether the dysfunction is one of hypoconnection, hyperconnection or a combination of the two. The final Sect. 15.8 contains a discussion of the neuroanatomical basis of cognitive impairment in the primary degenerative dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz F, Scheibel A, Fisher M, Zaidel E (1992a) Fiber composition of the human corpus callosum. Brain Res 598:143–153

    PubMed  CAS  Google Scholar 

  • Aboitiz F, Scheibel A, Fisher M, Zaidel E (1992b) Individual differences in brain asymmetries and fiber composition in the human corpus callosum. Brain Res 598:154–161

    PubMed  CAS  Google Scholar 

  • Adair JC, Barrett AM (2008) Spatial neglect: Clinical and neuroscience review – a wealth of information on the poverty of spatial attention. Ann NY Acad Sci 1142:21–43

    PubMed Central  PubMed  Google Scholar 

  • Adolphs R, Tranel D, Damasio AR (2003) Dissociable neural systems for recognizing emotions. Brain Cogn 52:61–69

    PubMed  Google Scholar 

  • Agosta F, Henry RG, Migliaccio R, Neuhaus J, Miller BL, Dronkers NF et al (2010) Language networks in semantic dementia. Brain 133:286–299

    PubMed Central  PubMed  Google Scholar 

  • Ahmad Z, Balsamo M, Sachs BC, Xu B, Gaillard WD (2003) Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology 60:1598–1605

    PubMed  CAS  Google Scholar 

  • Alain C, Arnott SR, Hevenor S, Graham S, Grand CL (2001) ‘What’ and ‘where’ in the human auditory system. Proc Natl Acad Sci USA 98:12301–12306

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alexander MP, Stuss DT, Benson DF (1979) Capgras syndrome: a reduplication phenomenon. Neurology 29:334–339

    PubMed  CAS  Google Scholar 

  • Alladi S, Xuereb J, Bak T, Nestor P, Knibb J, Patterson K, Hodges JR (2007) Focal cortical presentations of Alzheimer’s disease. Brain 130:2636–2645

    PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiatr Psych Gerichtl Med 64:146–148

    Google Scholar 

  • Alzheimer A (1911) Über eigenartige Krankheitsfälle des späteren Alters. Z Ges Neurol Psychiatr 4:356–385

    Google Scholar 

  • Amunts K, Zilles K (2006) A multimodal atlas of structure and function in Broca’s region. In: Grodzinsky Y, Amunts K (eds) Broca’s region. Oxford University Press, Oxford, pp 17–30

    Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    PubMed  CAS  Google Scholar 

  • Andersen RA, Asanuma C, Cowan WM (1985) Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: a study using retrogradely transported fluorescent dyes. J Comp Neurol 232:443–455

    PubMed  CAS  Google Scholar 

  • Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a in the macaque. J Neurosci 10:1176–1196

    PubMed  CAS  Google Scholar 

  • Anderson JM, Gilmore R, Roper S, Crosson B, Bauer RM, Nadeau S et al (1999) Conduction aphasia and the arcuate fascicle: a reexamination of the Wernicke-Geschwind model. Brain Lang 70:1–12

    PubMed  CAS  Google Scholar 

  • Annett M (1985) Left, right, hand and brain: the right shift theory. Erlbaum, London

    Google Scholar 

  • Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knösche TR (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825

    PubMed  CAS  Google Scholar 

  • Arbib M (2006) Broca’s area in system perspective: language in the context of action-oriented perception. In: Grodzinsky Y, Amunts K (eds) Broca’s region. Oxford University Press, Oxford, pp 153–168

    Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients in Alzheimer’s disease. Cereb Cortex 1:103–116

    PubMed  CAS  Google Scholar 

  • Asanuma C, Andersen RA, Cowan WM (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol 241:357–381

    PubMed  CAS  Google Scholar 

  • Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Bálint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25:51–81

    Google Scholar 

  • Balsamo M, Tojano L, Giamundo A, Grossi D (2008) Left hand tactile agnosia after posterior callosal lesion. Cortex 44:1030–1036

    PubMed  Google Scholar 

  • Barbas H (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52:319–330

    PubMed  CAS  Google Scholar 

  • Barbas H, Haswell Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313:65–94

    PubMed  CAS  Google Scholar 

  • Barkovich AJ (2000) Pediatric imaging, 3rd edn. Lippincott, Philadelphia, PA

    Google Scholar 

  • Barton JS, Caplan LR (2001) Cerebral visual dysfunction. In: Bogousslavsky J, Caplan LR (eds) Stroke syndromes, 2nd edn. Cambridge University Press, Cambridge, pp 87–110

    Google Scholar 

  • Begliomini C, Wall MB, Smith AT, Castiello U (2007) Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci 25:1245–1252

    PubMed  Google Scholar 

  • Ben-Shachar M, Dougherty RF, Wandell BA (2007) White matter pathways in reading. Curr Opin Neurobiol 17:258–270

    PubMed  CAS  Google Scholar 

  • Benson DF, Segarra J, Albert ML (1974) Visual agnosia – prosopagnosia. Arch Neurol 30:307–310

    PubMed  CAS  Google Scholar 

  • Berlucchi G, Aglioti S, Marzi CA, Tassinari G (1995) Corpus callosum and simple visuomotor integration. Neuropsychologia 33:923–936

    PubMed  CAS  Google Scholar 

  • Berryhill ME, Phuong L, Picasso L, Cabeza R, Olson IR (2007) Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographic memory. J Neurosci 27:14415–14423

    PubMed  CAS  Google Scholar 

  • Bigio EH, Lipton AM, White CL, Dickson DW, Hirano A (2003) Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol 29:239–253

    PubMed  CAS  Google Scholar 

  • Binkofski F, Buccino G (2004) Motor functions of the Broca’s region: from action to language. Brain Lang 89:362–369

    PubMed  Google Scholar 

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund H-J (1998) Human anterior intraparietal area subserves prehension. Neurology 50:1253–1259

    PubMed  CAS  Google Scholar 

  • Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund H-J (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128:210–213

    PubMed  CAS  Google Scholar 

  • Binkofski F, Kunesch F, Classen J, Seitz RJ, Freund H-J (2001) Tactile apraxia: unilateral apractic disorder of tactile object exploration associated with parietal lobe lesions. Brain 124:132–144

    PubMed  CAS  Google Scholar 

  • Bodamer J (1947) Die Prosop-Agnosie (Die Agnosie des Physio­gnomieerkennens). Arch Psychiatr Nervenkrankh 179:6–53, English translation by Ellis HD, Florence M (1990) Cogn Neuropsychol 7:81–105

    Google Scholar 

  • Boeve B, Silber M, Saper C, Ferman T, Dickson D, Parisi J et al (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130:2770–2788

    PubMed  CAS  Google Scholar 

  • Braak H (1976) A primitive gigantopyramidal field buried in the depth of the cingulate gyrus of the human brain. Brain Res 109:219–233

    PubMed  CAS  Google Scholar 

  • Braak H (1978a) On magnopyramidal temporal fields – probable morphological counterpart of Wernicke’s sensory speech area. Anat Embryol (Berl) 152:141–169

    CAS  Google Scholar 

  • Braak H (1978b) The pigment architecture of the human temporal lobe. Anat Embryol (Berl) 154:213–240

    CAS  Google Scholar 

  • Braak H (1979) The pigment architecture of the human frontal lobe. I. Precentral, subcentral, and frontal regions. Anat Embryol (Berl) 157:35–68

    CAS  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Heidelberg

    Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    CAS  Google Scholar 

  • Branche C, Milner B, Rasmussen T (1964) Intracarotid sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg 21:399–405

    Google Scholar 

  • Brauer J, Friederici AD (2007) Functional neural networks of semantic and syntactic processes in the developing brain. J Cogn Neurosci 19:1609–1623

    PubMed  Google Scholar 

  • Brauer J, Neumann J, Friederici AD (2008) Temporal dynamics of perisylvian activation during language processing in children and adults. Neuroimage 41:1484–1492

    PubMed Central  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubitschik M, Hoffmann K-P et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    PubMed  CAS  Google Scholar 

  • Broca P (1861) Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bull Soc Anat (Paris) 2e série, 6:330–357

    Google Scholar 

  • Broca P (1865) Sur le siège de la faculté du langage articulé. Bull Soc Anthopol Paris 6:377–393

    Google Scholar 

  • Brodmann K (1903) Beiträge zur histologischen Lokalisation der Grosshirnrinde. I. Die Regio Rolandica. J Psychol Neurol (Lpz) 2:79–107

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Gross­hirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig, English translation by LJ Garey (1999) Brodmann’s Localisation in the Cerebral Cortex. Imperial College Press, London

    Google Scholar 

  • Brooks JC, Nurmikko TJ, Bimson WE, Singh KD, Roberts N (2002) fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15:293–301

    PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME (1984) Physiology of the frontal eye fields. Trends Neurosci 7:436–441

    Google Scholar 

  • Brun A (1987) Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. Arch Gerontol Geriatr 6:193–208

    PubMed  CAS  Google Scholar 

  • Brun A, Englund E (1981) Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 5:549–564

    PubMed  CAS  Google Scholar 

  • Brun A, Passant U (1996) Frontal lobe degeneration of non-Alzheimer type. Structural characteristics, diagnostic criteria and relation to other frontotemporal dementias. Acta Neurol Scand Suppl 168:28–30

    PubMed  CAS  Google Scholar 

  • Buckwalter JA, Parvizi J, Morecraft RJ, Van Hoesen GW (2008) Thalamic projections to the posteromedial cortex in the macaque. J Comp Neurol 507:1709–1733

    PubMed Central  PubMed  Google Scholar 

  • Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-­dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105

    PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57:349–358

    PubMed  CAS  Google Scholar 

  • Cabeza R, Ciaramelli E, Olson IR, Moscovitch M (2008) The parietal cortex and episodic memory: an attentional account. Nat Rev Neurosci 9:613–625

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VM-Y, Hatanpaa KJ et al (2007a) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuro­pathol (Berl) 114:5–22

    Google Scholar 

  • Cairns NJ, Lee VM-Y, Trojanowski JQ (2007b) Genetics and neuropathology of frontotemporal dementia. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 382–407

    Google Scholar 

  • Calder AJ, Keane J, Manes F, Antoun N, Young AW (2000) Impaired recognition and experience of disgust following brain injury. Nat Neurosci 3:1077–1078

    PubMed  CAS  Google Scholar 

  • Cambier J, Masson M, Dairou R, Henin D (1981) A parietal form of Pick’s disease: clinical and pathological study. Rev Neurol (Paris) 137:33–38

    CAS  Google Scholar 

  • Caminiti R, Genovesio A, Marconi B, Mayer AB, Onorati P, Ferraina S et al (1999) Early coding of reaching: frontal and parietal association connections of parieto-occipital cortex. Eur J Neurosci 11:3339–3345

    PubMed  CAS  Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. University Press, Cambridge

    Google Scholar 

  • Cantagallo A, Della Sala S (1998) Preserved insight in an artist with extrapersonal spatial neglect. Cortex 34:163–189

    PubMed  CAS  Google Scholar 

  • Capgras J, Reboul-Lachaux J (1923) L’Illusion des ‘sosies’ dans un délire systématise chronique. Bull Soc Clin Med Ment 2:6–16

    Google Scholar 

  • Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239

    PubMed  Google Scholar 

  • Catani M, Mesulam M-M (2008a) What is a disconnection syndrome? Cortex 44:911–913

    PubMed  Google Scholar 

  • Catani M, Mesulam M-M (2008b) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44:953–961

    PubMed Central  PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    PubMed  Google Scholar 

  • Catani M, Jones DK, Donato R, ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107

    PubMed  Google Scholar 

  • Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    PubMed  Google Scholar 

  • Catani M, Allin MPG, Husain M, Pugliese L, Mesulam M-M, Murray RM, Jones DK (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 104:17163–17168

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cavada C, Goldman-Rakic P (1989a) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421

    PubMed  CAS  Google Scholar 

  • Cavada C, Goldman-Rakic P (1989b) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    PubMed  CAS  Google Scholar 

  • Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    PubMed  Google Scholar 

  • Chabriat H, Godefroy O (2007) Vascular dementia. In: Godefroy O, Bogousslavsky J (eds) The behavioral and cognitive neurology of stroke. Cambridge University Press, Cambridge, pp 586–616

    Google Scholar 

  • Chan D, Anderson V, Pijnenburg Y, Whitwell J, Barnes J, Scahill R et al (2009) The clinical profile of right temporal lobe atrophy. Brain 132:1287–1298

    PubMed  Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Left-right asymmetries of the temporal speech areas of the human fetus. Ann Neurol 1:346–348

    Google Scholar 

  • Chomsky N (1957) Syntactic structure. Mouton, ‘s-Gravenhage

    Google Scholar 

  • Chow TW, Cummings JF (2007) Fronto-subcortical circuits. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 25–43

    Google Scholar 

  • Clarke S, Bellmann-Thiran A, Maeder P, Adriani M, Vernet O, Regli L et al (2002) What and where in human audition: selective deficits following focal hemispheric lesions. Exp Brain Res 147:8–15

    PubMed  Google Scholar 

  • Cogan DG (1985) Visual disturbances with focal progressive dementing disease. Am J Ophthalmol 100:68–72

    PubMed  CAS  Google Scholar 

  • Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:353–362

    Google Scholar 

  • Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G, Hénaff MA et al (2000) The visual word form area: spatial and temporal characterization of an initial step of reading in normal subjects and posterior split-brain patients. Brain 123:291–307

    PubMed  Google Scholar 

  • Cohen L, Lehéricy S, Chochon F, Lerner C, Rivaud S, Dehaene S (2002) Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125:1054–1069

    PubMed  Google Scholar 

  • Cohn R, Neumann MS, Wood DH (1977) Prosopagnosia: a clinicopathological study. Ann Neurol 1:177–182

    PubMed  CAS  Google Scholar 

  • Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269:392–413

    PubMed  CAS  Google Scholar 

  • Colby CL, Duhamel J-R, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69:902–914

    PubMed  CAS  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:665–666

    Google Scholar 

  • Craig AD (2009) How do you feel – now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    PubMed  CAS  Google Scholar 

  • Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    PubMed  CAS  Google Scholar 

  • Croisile B, Trillet M, Hibert O, Cinotti L, Maugière F, Aimand G (1991) Désordres visuoconstructifs et alexie-agraphie associés à une atrophie corticale postérieure. Rev Neurol (Paris) 147:138–143

    CAS  Google Scholar 

  • Damasio AR, Damasio H (1983) Anatomical basis of pure alexia. Neurology 33:1573–1583

    PubMed  CAS  Google Scholar 

  • Damasio AR, Damasio H (2000) Aphasia and the neural basis of language. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 294–315

    Google Scholar 

  • Damasio AR, Tranel D (1993) Nouns and verbs are retrieved with differently distributed neural systems. Proc Natl Acad Sci USA 90:4957–4960

    PubMed Central  PubMed  CAS  Google Scholar 

  • Damasio AR, Damasio H, Rizzo M, Varney N, Gersh F (1982) Aphasia with non-hemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol 39:15–20

    PubMed  CAS  Google Scholar 

  • Damasio AR, Tranel D, Damasio H (1990) Face agnosia and the neural substrates of memory. Annu Rev Neurosci 13:89–109

    PubMed  CAS  Google Scholar 

  • Damasio AR, Tranel D, Rizzo M (2000) Disorders of complex visual processing. In: Mesulam M-M (ed) Principles of behavior and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 332–372

    Google Scholar 

  • Darian-Smith C, Darian-Smith I, Cheema SS (1990a) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple fluorescent tracers. J Comp Neurol 299:17–46

    PubMed  CAS  Google Scholar 

  • Darian-Smith C, Darian-Smith I, Cheema SS (1990b) Thalamic projections to sensorimotor cortex in the macaque monkey. J Comp Neurol 299:47–63

    PubMed  CAS  Google Scholar 

  • Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268

    PubMed  Google Scholar 

  • Davare M, Andres M, Clerget E, Thonnard JL, Olivier E (2007) Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci 27:3974–3980

    PubMed  CAS  Google Scholar 

  • Davies RR, Graham KS, Xuereb JH, Williams GB, Hodges JR (2004) The human perirhinal cortex and semantic memory. Eur J Neurosci 20:2441–2446

    PubMed  CAS  Google Scholar 

  • Davies RR, Hodges JR, Kril JJ, Patterson K, Halliday GM, Xuereb JH (2005) The pathological basis of semantic dementia. Brain 128:1984–1995

    PubMed  Google Scholar 

  • de Lacoste MC, Kirkpatrick JB, Ross ED (1985) Topography of the human corpus callosum. J Neuropathol Exp Neurol 44:578–591

    PubMed  Google Scholar 

  • De Witte L, Wilssens I, Engelborghs S, De Deyn PP, Mariën P (2006) Impairment of syntax and lexical semantics in a patient with bilteral paramedian thalamic infarction. Brain Lang 96:69–77

    PubMed  Google Scholar 

  • Dehaene S, Cohen L, Sigman M, Vinckier F (2005) The neural code for written words. Trends Cogn Sci 9:335–341

    PubMed  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S, Hertz-Pannier S (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015

    PubMed  CAS  Google Scholar 

  • Dejerine J (1891) Sur un cas de cécité verbale avec agraphie, suivi d’autopsie. Mém Soc Biol 3:197–201

    Google Scholar 

  • Dejerine J (1892) Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Mém Soc Biol 4:61–90

    Google Scholar 

  • Dejerine J (1895) Anatomie des centres nerveux, vol 1. Rueff, Paris

    Google Scholar 

  • Dejerine J (1901) Anatomie des centres nerveux, vol 2. Rueff, Paris

    Google Scholar 

  • Demeurisse G (1997) Contribution of functional imaging techniques to the study of subcortical aphasia. J Neuroling 10:301–311

    Google Scholar 

  • Deramecourt V, Lebert F, Debachy B, Mackowiak-Cordoliani MA, Bombois S et al (2010) Prediction of pathology in primary progressive language and speech disorders. Neurology 74:42–49

    PubMed  CAS  Google Scholar 

  • deToledo-Morrell L, Sullivan MP, Morrell F, Wilson RS, Bennett DA, Spencer S (1997) Alzheimer’s disease: in vivo detection of differential vulnerability of brain regions. Neurobiol Aging 18:463–468

    PubMed  CAS  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306

    PubMed  Google Scholar 

  • Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    PubMed  Google Scholar 

  • Di Virgilio G, Clarke S (1997) Direct interhemispheric visual input to human speech areas. Hum Brain Mapp 5:347–354

    PubMed  Google Scholar 

  • Di Virgilio G, Clarke S, Pizzolatto G, Schaffner T (1999) Cortical regions contributing to the anterior commissure in man. Exp Brain Res 124:1–7

    PubMed  Google Scholar 

  • Dieguez S, Assal G, Bogousslavsky J (2007) Visconti and Fellini: from left social neorealism to right-hemisphere stroke. In: Bogousslavsky J, Hennerici MG (eds) Neurological disorders in famous artists – part 2. Karger, Basel, pp 44–74

    Google Scholar 

  • Dien J (2009) A tale of two recognition systems: implications of the fusiform face area and the visual world form area for lateralized object recognition models. Neuropsychologia 47:1–16

    PubMed  Google Scholar 

  • Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortifcal fields in the lateral fields of Homo sapiens: evidence for SII and PV. J Comp Neurol 418:1–21

    PubMed  CAS  Google Scholar 

  • Donker Kaat L, Boon AJW, Kamphorst W, Ravid R, Duivenvoorden HJ, van Swieten JC (2007) Frontal presentation in progressive supranuclear palsy. Neurology 69:723–729

    PubMed  CAS  Google Scholar 

  • Doricchi F, Thiebaut de Schotten M, Tomaiuolo F, Bartolomeo P (2008) White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex 44:983–995

    PubMed  Google Scholar 

  • Doron K, Gazzaniga M (2008) Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication. Cortex 44:1023–1029

    PubMed  Google Scholar 

  • Dorsaint-Pierre R, Penhune VB, Watkins KE, Neelin P, Lerch JP, Bouffard M et al (2006) Asymmetries of the planum temporale and Heschl’s gyrus: relationship to language lateralization. Brain 129:1164–1176

    PubMed  Google Scholar 

  • Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130:1432–1441

    PubMed  CAS  Google Scholar 

  • Dubois B, Pillon B, McKeith I (2007) Parkinson’s disease with and without dementia and Lewy body dementia. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 472–504

    Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor area in the frontal lobe. J Neurosci 16:6513–6525

    Google Scholar 

  • Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267

    PubMed  Google Scholar 

  • Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006b) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279

    PubMed  Google Scholar 

  • Eling P (1984) Broca on the relation between handedness and cerebral speech dominance. Brain Lang 22:158–159

    PubMed  CAS  Google Scholar 

  • Elliot Smith G (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat (Lond) 41:237–254

    Google Scholar 

  • Epelbaum S, Pinel P, Gaillard R, Delmaire C, Perrin M, Dupont S et al (2008) Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44:962–970

    PubMed  Google Scholar 

  • Esiri MM, Lee VM-Y, Trojanowski JQ (eds) (2004) The neuropathology of dementia, 2nd edn. Cambridge, Cambridge University Press

    Google Scholar 

  • Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T (2001) Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomised patient. J Cogn Neurosci 13:1071–1079

    PubMed  CAS  Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611

    PubMed  CAS  Google Scholar 

  • Farah M, Humphreys GW, Rodman HR (1999) Object and fact recognition. In: Zigmund MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic, San Diego, CA, pp 1339–1361

    Google Scholar 

  • Felleman DV, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    PubMed  CAS  Google Scholar 

  • ffytche DH (2008) The hodology of hallucinations. Cortex 44:1067–1083

    PubMed  Google Scholar 

  • Fiebach CJ, Friederici AD, Muller K, von Cramon DY (2002) fMRI evidence for dual routes to the mental lexicon in visual word recognition. J Cogn Neurosci 14:11–23

    PubMed  Google Scholar 

  • Filley CM (2001) The behavioral neurology of white matter. Oxford University Press, New York

    Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15:626–631

    PubMed  CAS  Google Scholar 

  • Fogassi L, Gallese V, Fadiga L, Rizzolatti G (1998) Neurons responding to the sight of goal-directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Soc Neurosci Abstr 24:257.5

    Google Scholar 

  • Forman MS, Trojanowski JQ, Lee VM-Y (2007) TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol 17:548–555

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fox CJ, Iaria G, Barton JJS (2008) Disconnection in prosopagnosia and face processing. Cortex 44:996–1009

    PubMed  Google Scholar 

  • Frank GK, Oberndorfer TA, Simmons AN, Paulus MP, Fudge J, Yang TT, Kaye WH (2008) Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage 39:1559–1569

    PubMed  Google Scholar 

  • Freund H-J (1987) Abnormalities of motor behavior after cortical lesions in humans. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, vol V, Higher functions of the brain. American Physiological Society, Bethesda, MD, pp 763–810

    Google Scholar 

  • Freund H-J (2003) Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 93:179–193

    PubMed  Google Scholar 

  • Freund H-J (2005) Unimodal sensory-motor transformation disorders. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders: from neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 339–358

    Google Scholar 

  • Frey S, Kostopoulos P, Petrides M (2000) Orbitofrontal involvement in the processing of unpleasant auditory information. Eur J Neurosci 12:3709–3712

    PubMed  CAS  Google Scholar 

  • Frey SH, Vinton D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn Brain Res 23:397–405

    Google Scholar 

  • Frey S, Campbell JSW, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28:11435–11444

    PubMed  CAS  Google Scholar 

  • Friederici AD (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13:175–181

    PubMed  Google Scholar 

  • Friederici AD, Weissenborn J (2007) Mapping sentence form onto meaning: the syntax-semantic interface. Brain Res 1146:50–58

    PubMed  CAS  Google Scholar 

  • Friederici AD, Bahlmann J, Heim S, Schubotz RI, Anwander A (2006) The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proc Natl Acad Sci USA 103:2458–2463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Frontera JG (1956) Some results obtained by electrical stimulation of the cortex of the island of Reil in the brain of the monkey (Macaca mulatta). J Comp Neurol 105:365–394

    PubMed  CAS  Google Scholar 

  • Fujishori H, Ferman T, Boeve B, Smith G, Graff-Radford N, Uitti R et al (2008) Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases. J Neuropathol Exp Neurol 67:649–656

    Google Scholar 

  • Funnell M, Corballis P, Gazzaniga M (2000) Insights into the functional specificity of the corpus callosum. Brain 123:920–926

    PubMed  Google Scholar 

  • Gaffan D, Hornak J (1997) Visual neglect in the monkey. Representation and disconnection. Brain 120:1647–1657

    PubMed  Google Scholar 

  • Gaillard R, Naccache L, Pinel P, Clemenceau S, Volle E, Hasboun D et al (2006) Directintracranial, fMRI and lesion evidence for the causal role of left inferotempoal cortex in reading. Neuron 50:191–204

    PubMed  CAS  Google Scholar 

  • Gainotti G (2001) Disorders of emotional behaviour. J Neurol 248:743–749

    PubMed  CAS  Google Scholar 

  • Galaburda AM, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610

    PubMed  CAS  Google Scholar 

  • Galaburda AM, Sanides F, Geschwind N (1978a) Human brain: cytoarchitectonic left-right asymmetries in the temporal speech region. Arch Neurol 35:812–817

    PubMed  CAS  Google Scholar 

  • Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978b) Right-left asymmetries in the brain. Science 199:852–856

    PubMed  CAS  Google Scholar 

  • Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. NeuroReport 5:1525–1529

    PubMed  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    PubMed  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (2002) Action representation in the inferior parietal lobule. In: Prinz W, Hommel B (eds) Common mechanisms in perception and attention: attention and performance, vol XIX. Oxford University Press, Oxford, pp 334–355

    Google Scholar 

  • Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52

    PubMed  CAS  Google Scholar 

  • Galletti C, Fattori P, Kutz DF, Gamberini M (1999) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11:575–582

    PubMed  CAS  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6A: an occipitoparietal network processing visual information. Eur J Neurosci 13:1572–1588

    PubMed  CAS  Google Scholar 

  • Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170

    PubMed  Google Scholar 

  • Gamberini M, Passarelli L, Fattori P, Zucchelli M, Bakola S, Luppino G, Galletti C (2009) Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J Comp Neurol 513:622–642

    PubMed  Google Scholar 

  • Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke’s brain language area homolog. Science 279:220–222

    PubMed  CAS  Google Scholar 

  • Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication. Does the corpus callosum enable the human condition? Brain 123:1293–1326

    PubMed  Google Scholar 

  • Gazzaniga M, Bogen J, Sperry R (1962) Some functional effects of sectioning of the cerebral commissures in man. Proc Natl Acad Sci USA 48:1765–1769

    PubMed Central  PubMed  CAS  Google Scholar 

  • Geschwind N (1965a) Disconnexion syndromes in animals and man. I. Brain 88:237–294

    PubMed  CAS  Google Scholar 

  • Geschwind N (1965b) Disconnexion syndromes in animals and man. II. Brain 88:585–644

    PubMed  CAS  Google Scholar 

  • Geschwind N (1970) The organization of language and the brain. Science 161:186–187

    Google Scholar 

  • Geschwind N, Galaburda A (1985a) Cerebral lateralization: biological mechanisms, association, and pathology. I. Arch Neurol 42:428–458

    PubMed  CAS  Google Scholar 

  • Geschwind N, Galaburda A (1985b) Cerebral lateralization: biological mechanisms, association, and pathology. II. Arch Neurol 42:521–552

    PubMed  CAS  Google Scholar 

  • Geschwind DH, Iacoboni M (2007) Structural and functional asymmetries of the human frontal lobes. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 68–91

    Google Scholar 

  • Geschwind N, Kaplan E (1962) A human cerebral deconnection syndrome. A preliminary report. Neurology 12:675–685

    PubMed  CAS  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161:186–187

    PubMed  CAS  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174:1–92

    CAS  Google Scholar 

  • Geyer S, Zilles K (2005) Functional neuroanatomy of the human motor cortex. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. From neuroanatomy and neurobiology to clinical neurobiology. Oxford University Press, Oxford, pp 3–22

    Google Scholar 

  • Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl) 202:443–474

    CAS  Google Scholar 

  • Giguère M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277:195–213

    PubMed  Google Scholar 

  • Giorgio A, Watkins KE, Douad G, James AC, James S, De Stefano N et al (2008) Changes in white matter microstructure during adolescence. Neuroimage 39:52–61

    PubMed  CAS  Google Scholar 

  • Giroud M, Dumas R (1995) Clinical and topographical range of ­callosal infarction: a clinical and radiological correlation study. J Neurol Neurosurg Psychiatry 59:238–242

    PubMed Central  PubMed  CAS  Google Scholar 

  • Glasser MF, Rilling JK (2008) DTI Tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482

    PubMed  Google Scholar 

  • Glickstein M, Berlucchi G (2008) Classical disconnection studies of the corpus callosum. Cortex 44:914–927

    PubMed  Google Scholar 

  • Godefroy O, Stuss D (2007) Dysexecutive syndromes. In: Godefroy O, Bogousslavsky J (eds) The behavioral and cognitive neurology of stroke. Cambridge University Press, Cambridge, pp 369–406

    Google Scholar 

  • Goldenberg G (2008) Apraxia. Handb Clin Neurol 88:323–338

    PubMed  Google Scholar 

  • Goldenberg G, Wimmer A, Holzner F, Wessely P (1985) Apraxia of the left limbs in a case of callosal disconnection: the contribution of medial frontal lobe damage. Cortex 21:135–148

    PubMed  CAS  Google Scholar 

  • Goldenberg G, Hermsdörfer J, Laimgruber K (2001) Imitation of gestures by disconnected hemispheres. Neuropsychologia 39:1432–1443

    PubMed  CAS  Google Scholar 

  • Goldman PS, Nauta WJH (1976) Autoradiographic demonstation of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Res 116:145–149

    PubMed  CAS  Google Scholar 

  • Goldman PS, Nauta WJH (1977a) An intricately patterned prefrontocaudate projection in the rhesus monkey. J Comp Neurol 171:369–386

    Google Scholar 

  • Goldman PS, Nauta WJH (1977b) Columnar distribution of corticocortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122:393–413

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1984) Modular organization of prefrontal cortex. Trends Neurosci 7:419–424

    Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, vol V, Higher functions of the brain. American Physiological Society, Bethesda, MD, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projections to the frontal lobe. J Comp Neurol 242:535–560

    PubMed  CAS  Google Scholar 

  • Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55:335–346

    PubMed Central  PubMed  Google Scholar 

  • Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF, Marcone A et al (2008) The logopenic/phonological variant of primary progressive aphasia. Neurology 71:1227–1234

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grabowski TJ, Damasio AR (2004) Definition, clinical features and neuroanatomical basis of dementia. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 1–33

    Google Scholar 

  • Graff-Radford WR, Damasio H, Yamada T, Eslinger P, Damasio A (1985) Nonhemorrhagic thalamic infarctions: clinical, neurophysiological and electrophysiological findings in four anatomical groups defined by CT. Brain 108:485–516

    PubMed  Google Scholar 

  • Graff-Radford WR, Welsh K, Godersky J (1987) Callosal apraxia. Neurology 37:100–105

    PubMed  CAS  Google Scholar 

  • Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study strongly implies equivalencies between humans and monkey. Neuron 35:173–184

    PubMed  CAS  Google Scholar 

  • Griffiths TD, Green CGR, Rees A, Rees G (2000) Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp 9:72–80

    PubMed  CAS  Google Scholar 

  • Grodzinsky Y (1986) Language deficits and the theory of syntax. Brain Lang 27:135–139

    PubMed  CAS  Google Scholar 

  • Grodzinsky Y (2000) The neurology of syntax: language use without Broca’s area. Behav Brain Sci 23:1–21

    PubMed  CAS  Google Scholar 

  • Grodzinsky Y (2006) A blueprint for a brain map of syntax. In: Grodzinsky Y, Amunts K (eds) Broca’s region. Oxford University Press, Oxford, pp 83–107

    Google Scholar 

  • Grodzinsky Y, Friederici A (2006) Neuroimaging of syntax and syntactic processing. Curr Opin Neurobiol 16:240–246

    PubMed  CAS  Google Scholar 

  • Grodzinsky Y, Santi A (2008) The battle for Broca’s region. Trends Cogn Sci 12:474–480

    PubMed  Google Scholar 

  • Grol MJ, Majdandzic J, Stephan KE, Verhagen L, Dijkerman HC, Bekkering H et al (2007) Parieto-frontal connectivity during visually guided grasping. J Neurosci 27:11877–11887

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grossman M (2010) Primary progressive aphasia: clinicopathological correlations. Nat Rev Neurol 6:88–97

    Google Scholar 

  • Grossman M, McMillan C, Moore P, Ding L, Glosser G, Work M et al (2004) What’s in a name? Voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia, and corticobasal degeneration. Brain 127:628–649

    PubMed  Google Scholar 

  • Hackett TA, Kaas JH (2004) Auditory cortex in primates: functional subdivisions and processing streams. In: Galaburda A (ed) The cognitive neuroscience III. MIT, Cambridge, MA, pp 215–232

    Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic organization of the core region in the auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222

    PubMed  CAS  Google Scholar 

  • Hadjikhani N, de Gelder B (2002) Neural basis of prosopagnosia: an fMRI study. Hum Brain Mapp 16:176–182

    PubMed  Google Scholar 

  • Harris LJ (1991) Cerebral control for speech in right-handers and left-handers: an analysis of the views of Paul Broca, his contemporaries, and his successors. Brain Lang 40:1–50

    PubMed  CAS  Google Scholar 

  • Harris LJ (1999) Early theory and research on hemispheric specialization. Schizophr Bull 25:11–39

    PubMed  CAS  Google Scholar 

  • Hasson U, Small SL (2008) Functional magnetic resonance imaging (fMRI) research of language. In: Stemmer B, Whitaker HA (eds) Handbook of the neuroscience of language. Elsevier-Academic, Amsterdam, pp 81–89

    Google Scholar 

  • Hécaen H, Angelergues R (1962) Agnosia for faces (prosopagnosia). Arch Neurol 7:92–100

    PubMed  Google Scholar 

  • Heilman KM, Watson RT (2008) The disconnection apraxias. Cortex 44:975–985

    PubMed  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    PubMed  CAS  Google Scholar 

  • Hijdra A, Verbeeten B (1991) Leukoaraiosis and ventricular enlargement in patients with ischemic stroke. Stroke 22:447–450

    PubMed  CAS  Google Scholar 

  • Hodges JR, Patterson K, Oxbury S, Funnell E (1992) Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain 115:1783–1806

    PubMed  Google Scholar 

  • Hodges JR, Bozeat S, Lambon Ralph M, Patterson K, Spatt J (2000) The role of conceptual knowledge in object use – evidence from semantic dementia. Brain 123:1913–1925

    PubMed  Google Scholar 

  • Hof PR, Bouras C (1991) Object recognition deficit in Alzheimer’s disease: possible disconnection of the occipitotemporal component of the visual system. Neurosci Lett 122:53–56

    PubMed  CAS  Google Scholar 

  • Hof PR, Bouras C, Constantinidis J, Morrison JH (1989) Balint’s syndrome in Alzheimer’s disease: specific disruption of the occipitoparietal visual pathway. Neurology 43:305–313

    Google Scholar 

  • Hof PR, Bouras C, Constantinidis J, Morrison JH (1990) Selective ­disconnection of specific visual association pathways in cases of Alzheimer’s disease presenting with Balint’s syndrome. J Neuropathol Exp Neurol 49:168–194

    PubMed  CAS  Google Scholar 

  • Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994

    PubMed  Google Scholar 

  • Hopkins WD, Marino L, Rilling JK, MacGregor LA (1998) Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). NeuroReport 9:2913–2918

    PubMed  CAS  Google Scholar 

  • Horwitz B, Wise RJS (2008) PET research of language. In: Stemmer B, Whitaker HA (eds) Handbook of the neuroscience of language. Elsevier-Academic, Amsterdam, pp 71–80

    Google Scholar 

  • Hua K, Oishi K, Zhang J, Wakana S, Yoshioka T, Zhang W et al (2009) Mapping of functional areas in the human cortex based on connectivity through association fibers. Cereb Cortex 19:1889–1895

    PubMed Central  PubMed  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. I. Subcortical connections. J Comp Neurol 253:415–439

    PubMed  CAS  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1987) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. J Comp Neurol 265:332–361

    PubMed  CAS  Google Scholar 

  • Husain M, Nachev P (2006) Space and the parietal cortex. Trends Cogn Sci 11:30–36

    PubMed  Google Scholar 

  • Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303

    PubMed  Google Scholar 

  • Hyvärinen J (1982a) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129

    PubMed  Google Scholar 

  • Hyvärinen J (1982b) The parietal cortex of monkey and man. Springer, Heidelberg

    Google Scholar 

  • Hyvärinen J, Poranen A (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–692

    PubMed  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    PubMed  CAS  Google Scholar 

  • Innocenti GM (1994) Some new trends in the study of the corpus callosum. Behav Brain Res 64:1–8

    PubMed  CAS  Google Scholar 

  • Jackson JH (1874) On the nature of the duality of the brain. In: Taylor J (ed) Selected writings of John Hughlings Jackson, vol 2. Basic Books, New York, pp 129–145

    Google Scholar 

  • Jacobson S, Trojanowski JQ (1977a) Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res 132:209–233

    PubMed  CAS  Google Scholar 

  • Jacobson S, Trojanowski JQ (1977b) Prefrontal granular cortex of the rhesus monkey. II. Interhemispheric cortical afferents. Brain Res 132:235–246

    PubMed  CAS  Google Scholar 

  • Jager G, Postma A (2003) On the hemispheric specialization for categorical and coordinate spatial relations: a review of the current evidence. Neuropsychologia 41:504–515

    PubMed  Google Scholar 

  • Jeannerod M, Farnè A (2003) The visuomotor functions of posterior parietal cortex. Adv Neurol 93:205–217

    PubMed  Google Scholar 

  • Jeannerod M, Decety J, Michel F (1994) Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32:369–380

    PubMed  CAS  Google Scholar 

  • Jobard G, Crivello F, Tzourio-Mazoyer N (2003) Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage 20:693–712

    PubMed  CAS  Google Scholar 

  • Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching. Physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6:102–119

    PubMed  CAS  Google Scholar 

  • Johnson JK, Head E, Kim R, Starr A, Cotman CW (1999) Clinical and pathological evidence for a frontal variant of Alzheimer’s disease. Arch Neurol 56:1233–1239

    PubMed  CAS  Google Scholar 

  • Johnson JK, Brun A, Head E (2007) Frontal variant in Alzheimer’s disease. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 429–444

    Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    PubMed  CAS  Google Scholar 

  • Josephs KA, Duffy JR (2008) Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr Opin Neurol 21:688–692

    PubMed  Google Scholar 

  • Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE et al (2006) Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129:1385–1398

    PubMed Central  PubMed  Google Scholar 

  • Josephs KA, Whitwell JL, Vemuri P, Senjem ML, Boeve BF, Knopman DS et al (2008) The anatomic correlate of prosopagnosia in semantic dementia. Neurology 71:1628–1633

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaada BR, Pribram KH, Epstein J (1949) Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus. J Neurophysiol 12:347–356

    PubMed  CAS  Google Scholar 

  • Kalaska JF, Cisek P, Gosselin-Kessiby N (2003) Mechanisms of selection and guidance of reaching movements in the parietal lobe. Adv Neurol 93:97–119

    PubMed  Google Scholar 

  • Kanne SM, Baleta DA, Storandt M, McKeel DW, Morris JC (1998) Relating anatomy to function in Alzheimer’s disease: ­neuropsychological profiles predict regional neuropathology 5 years later. Neurology 50:979–985

    PubMed  CAS  Google Scholar 

  • Kantarci K, Avula R, Senjem ML, Amikoglu AR, Zhang B, Weigand SD et al (2010) Dementia with Lewy bodies and Alzheimer disease. Neurodegenerative patterns characteristized by DTI. Neurology 74:1814–1821

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kanwisher N, McDermott J, Chun M (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    PubMed  CAS  Google Scholar 

  • Karas G, Scheltens P, Rombouts S, van Schijndel R, Klein M, Jones B et al (2007) Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology 49:967–976

    PubMed  Google Scholar 

  • Kaufer DI (2007) The dorsolateral and cingulate cortex. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 44–58

    Google Scholar 

  • Kertesz A, Lesk D, McCabe P (1977) Isotope localization of infarcts in aphasia. Arch Neurol (Chic) 24:326–332

    Google Scholar 

  • Kertesz A, Polk M, Black SE, Howell J (1990) Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging. Brain Res 530:40–48

    PubMed  CAS  Google Scholar 

  • Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG (2005) The evolution and pathology of frontotemporal dementia. Brain 128:1996–2005

    PubMed  Google Scholar 

  • Kievit J, Kuypers HGJM (1977) Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 29:299–322

    PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Cohen L (2006) The neural basis of prosopagnosia and pure alexia: recent insights from functional neuroimaging. Curr Opin Neurobiol 19:386–391

    Google Scholar 

  • Knopman DS, Christensen KJ, Schut LJ (1989) The spectrum of imaging and neuropsychological findings in Pick’s disease. Neurology 39:362–368

    PubMed  CAS  Google Scholar 

  • Knopman DS, Petersen RC, Edland SD, Cha RH, Rocca WA (2004) The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology 62:506–508

    PubMed  CAS  Google Scholar 

  • Kondo H, Saleem KS, Price JL (2003) Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465:499–523

    PubMed  Google Scholar 

  • Kondo H, Saleem KS, Price JL (2005) Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 493:479–509

    PubMed  Google Scholar 

  • Kosslyn S (1980) Image and mind. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372

    PubMed  Google Scholar 

  • Krolak-Salmon P, Henaff MA, Isnard J, Tallon-Baudry C, Guenot M, Vighetto A et al (2003) An attention modulated response to disgust in human ventral anterior insula. Ann Neurol 53:446–457

    PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    PubMed  Google Scholar 

  • Kuypers HGJM, Szwarcbart MK, Mishkin M, Rosvold HE (1965) Occipitotemporal corticocortical connections in the rhesus monkey. Exp Neurol 11:245–262

    PubMed  CAS  Google Scholar 

  • Lamantia AS, Rakic P (1990) Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol 291:520–537

    PubMed  CAS  Google Scholar 

  • Lawes INC, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79

    PubMed  Google Scholar 

  • Leichnetz GR (2001) Connections of the medial parietal cortex (area 7m) in the monkey. Anat Rec 263:215–236

    PubMed  CAS  Google Scholar 

  • Leiguarda R (2005) Apraxias as traditionally defined. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. Oxford University Press, Oxford, pp 303–338

    Google Scholar 

  • Leiguarda R, Marsden CD (2000) Limb apraxias: higher-order disorders of sensorimotor integration. Brain 123:860–879

    PubMed  Google Scholar 

  • LeMay M (1976) Morphological cerebral asymmetries of modern man, fossil man and nonhuman primate. Ann NY Acad Sci 280:349–366

    PubMed  CAS  Google Scholar 

  • LeMay M (1977) Asymmetries of the skull and handedness. J Neurol Sci 32:243–253

    PubMed  CAS  Google Scholar 

  • LeMay M, Geschwind N (1975) Hemispheric differences in the brains of great apes. Brain Behav Evol 11:48–52

    PubMed  CAS  Google Scholar 

  • Levine DN, Lee JM, Fisher CM (1993) The visual variant of Alzheimer’s disease: a clinicopathologic case study. Neurology 43:305–313

    PubMed  CAS  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurol 428:79–111

    PubMed  CAS  Google Scholar 

  • Lhermitte F, Chain F, Escourolle R, Ducarne B, Pillon B (1972) Etude anatomo-clinique d’un cas de prosopagnosia. Rev Neurol (Paris) 126:329–346

    CAS  Google Scholar 

  • Li CS, Mazzoni P, Andersen RA (1999) Effects of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades. J Neurophysiol 81:1827–1838

    PubMed  CAS  Google Scholar 

  • Lichtheim L (1885) On aphasia. Brain 7:433–484

    Google Scholar 

  • Liepmann H (1908) Drei Aufsätze aus dem Apraxiegebiet. Karger, Berlin

    Google Scholar 

  • Liepmann H, Maas O (1907) Fall von linksseitiger Agraphie und Apraxie bei rechtsseitiger Lähmung. J Psychol Neurol (Lpz) 10:214–227

    Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas cerebri humani. Karger, Basel

    Google Scholar 

  • Luppino G, Hamed SB, Gamberini M, Matelli M, Galletti C (2005) Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 21:3065–3076

    Google Scholar 

  • Luria AR (1959) Disorders of “simultaneous perception” in a case of bilateral occipitoparietal brain injury. Brain 82:437–449

    PubMed  CAS  Google Scholar 

  • Luzzatti C (2008) Acquired reading and writing disorders. In: Stemmer B, Whitaker H (eds) Handbook of the neuroscience of language. Elsevier, Amsterdam, pp 209–218

    Google Scholar 

  • Mackenzie IRA, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol (Berl) 119:1–4

    Google Scholar 

  • Maeda F, Kleiner-Fisman G, Pascual-Leone A (2002) Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. J Neurophysiol 87:1329–1335

    PubMed  Google Scholar 

  • Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869

    PubMed  Google Scholar 

  • Makris N, Papadimitriou GM, Sorg S, Kennedy DN, Caviness VS Jr, Pandya DN (2007) The occipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study. Neuroimage 37:1100–1111

    PubMed Central  PubMed  Google Scholar 

  • Makris N, Papadimitriou GM, Kaiser GR, Sorg S, Kennedy DN, Pandya DN (2009) Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DI-MRI study. Cereb Cortex 19:777–785

    PubMed Central  PubMed  Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M et al (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic stereotaxic map of area h0c5. Cereb Cortex 17:562–574

    PubMed  Google Scholar 

  • Marangolo P, De Renzi E, Di Pace E, Ciurli P, Castriota-Skanderberg A (1998) Let not thy left hand know what thy right hand knoweth. The case of a patient with an infarct involving the callosal pathways. Brain 121:1459–1467

    PubMed  Google Scholar 

  • Mariën P, Paquier P, Engelborghs S, De Deyn P (2001) Acquired crossed aphasia in dextral children revisited. Brain Lang 79:426–443

    PubMed  Google Scholar 

  • Matelli M, Luppino G (2001) Parietofrontal circuits for action and space perception. Neuroimage 14:27–32

    Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18:125–136

    PubMed  CAS  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–463

    PubMed  CAS  Google Scholar 

  • Matelli M, Luppino G, Geyer S, Zilles K (2004) Motor cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 973–996

    Google Scholar 

  • Maunsell JHR, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  CAS  Google Scholar 

  • McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299

    PubMed  Google Scholar 

  • McKeith IG, Dickson D, Lowe J, Emre M, O’Brien J, Feldman H et al (2005) Dementia with Lewy bodies: diagnosis and management. Third report of the DLB consortium. Neurology 65:1863–1872

    PubMed  CAS  Google Scholar 

  • Meadows JC (1974) The anatomical basis of prosopagnosia. J Neurol Neurosurg Psychiatry 37:489–501

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mesulam M-M (1982) Slowly progressive aphasia without generalized dementia. Ann Neurol 11:592–598

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (1985) Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam M-M (ed) Principles of behavioral neurology. Davis, Philadelpia, PA, pp 1–70

    Google Scholar 

  • Mesulam M-M (1987) Involutional and developmental implications of age-related neuronal changes: in search of an engram for wisdom. Neurobiol Aging 8:581–583

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (2000a) Behavioral neuroanatomy: large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 1–120

    Google Scholar 

  • Mesulam M-M (2000b) Attentional networks, confusional states, and neglect syndromes. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 174–256

    Google Scholar 

  • Mesulam M-M (2000c) Aging, Alzheimer’s disease, and dementia. Clinical and neurobiological perspectives. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. New York, Oxford University Press, pp 439–522

    Google Scholar 

  • Mesulam M-M (2001) Primary progressive aphasia. Ann Neurol 49:425–432

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ (1982a) Insula of the Old World monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp Neurol 212:1–22

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ (1982b) Insula of the Old World monkey. III. Efferent cortical output and comments on function. J Comp Neurol 212:38–52

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ (1985) The insula of Reil in man and monkey. Architectonics, connectivity, and function. In: Peters A, Jones EG (eds) The cerebral cortex, vol 4. New York, Plenum, pp 179–226

    Google Scholar 

  • Mesulam M-M, Wicklund A, Johnson N, Rogalski E, Léger GC, Rademaker A et al (2008) Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol 63:709–719

    PubMed Central  PubMed  Google Scholar 

  • Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker’s Handbuch der Lehre von den Geweben des Menschen und der Thiere, Vol 2. Engelmann, Leipzig, pp 694–808 (English translation by Putnam JJ, 1872: Stricker S (ed) Manual of Histology, William Wood, New York, pp 650–766

    Google Scholar 

  • Migliaccio R, Agosta F, Rascovsky K, Karydas A, Bonasera S, Rabinovici GD et al (2009) Clinical syndromes associated with posterior atrophy. Early age at onset AD spectrum. Neurology 73:1571–1578

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miller BL, Chang L, Mena I, Boone K, Lesser IM (1993) Progressive right frontotemporal degeneration: clinical, neuropsychological and SPECT characteristics. Dementia 4:204–213

    PubMed  CAS  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:415–417

    Google Scholar 

  • Molano J, Boeve B, Ferman T, Smith G, Parisi J, Dickson D (2010) Mild cognitive impairment associated with limbic and neocortical Lewy body disease: a clinicopathological study. Brain 133:540–556

    PubMed Central  PubMed  Google Scholar 

  • Monrad-Krohn GH (1947) Dysprody or altered “melody of language”. Brain 70:405–415

    PubMed  CAS  Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuro­image 13:684–701

    PubMed  CAS  Google Scholar 

  • Morris JH, Nagy Z (2004) Alzheimer’s disease. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 161–206

    Google Scholar 

  • Mountcastle VB (2005) The sensory hand. Neural mechanisms of somatic sensation. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908

    PubMed  CAS  Google Scholar 

  • Mufson EJ, Mesulam M-M (1982) Insula of the Old World monkey. II. Afferent subcortical input and comments on the claustrum. J Comp Neurol 212:23–37

    PubMed  CAS  Google Scholar 

  • Mummery CJ, Patterson K, Price CJ, Hodges JR (2000) A voxel-based morphometric study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann Neurol 47:36–45

    PubMed  CAS  Google Scholar 

  • Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal AIP. J Neurophysiol 83:2580–2601

    PubMed  CAS  Google Scholar 

  • Murdoch R (2009) The cerebellum and language: historical perspective and review. Cortex 45:950–961

    PubMed  Google Scholar 

  • Myers RE (1956) Function of corpus callosum in interocular transfer. Brain 79:358–363

    PubMed  CAS  Google Scholar 

  • Myers RE, Sperry RW (1953) Interocular transfer of a visual form discrimination habit in cats after section of the optic chiasm and corpus callosum. Anat Rec 115:351–352

    Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869

    PubMed  CAS  Google Scholar 

  • Nadeau SE (2008) Subcortical language mechanisms. In: Stemmer B, Whitaker H (eds) Handbook of the neuroscience of language. Elsevier, Amsterdam, pp 329–340

    Google Scholar 

  • Nadeau SE, Crosson B (1997) Subcortical aphasia. Brain Lang 58:355–358

    PubMed  CAS  Google Scholar 

  • Naeser MA, Alexander MP, Helm-Estabrooks N, Levine HL, Laughlin SA, Geschwind N (1982) Aphasia with predominantly subcortical lesions. Arch Neurol 39:2–14

    PubMed  CAS  Google Scholar 

  • Naidich TP, Kang E, Fatterpekar GM, Delman BN, Gultekin SH, Wolfe SH, Wolfe D et al (2004) The insula: anatomic study and MR imaging display at 1.5T. AJNR Am J Neuroradiol 25:222–232

    PubMed  Google Scholar 

  • Nauta WJH (1971) The problem of the frontal lobe: a reinterpretation. J Psychiatr Res 8:167–187

    PubMed  CAS  Google Scholar 

  • Neary D, Snowden JS, Mann DM, Northen B, Goulding PJ, Macdermott N (1990) Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry 53:23–32

    PubMed Central  PubMed  CAS  Google Scholar 

  • Neary D, Snowden JS, Gustafson L, Passant K, Stuss D, Black S et al (1998) Frontotemporal lobe degeneration: a consensus of clinical diagnostic criteria. Neurology 51:1546–1554

    PubMed  CAS  Google Scholar 

  • Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban GA (2005) Observing others: multiple action representation in the frontal lobe. Science 310:332–336

    PubMed  CAS  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi ML, Choo T et al (2006) Ubiquinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    PubMed  CAS  Google Scholar 

  • Neumann M, Rademakers R, Roeber S, Baker M, Kretschmar HA, Mackenzie IRA (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2921–2931

    Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system, 4th edn. Springer, Heidelberg

    Google Scholar 

  • O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley, New York

    Google Scholar 

  • Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineta JA (2005) EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn Brain Res 24:190–198

    Google Scholar 

  • Ochipa C, Rothi LJG, Heilman KM (1992) Conceptual apraxia in Alzheimer’s disease. Brain 115:1061–1071

    PubMed  Google Scholar 

  • Ogar J, Gorno-Tempini ML (2007) The orbitofrontal cortex and the insula. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 59–67

    Google Scholar 

  • Ogar J, Slama H, Dronkers N, Amici S, Gorno-Tempini ML (2005) Apraxia of speech: an overview. Neurocase 11:427–432

    PubMed  Google Scholar 

  • Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X et al (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457

    PubMed Central  PubMed  Google Scholar 

  • Öngür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449

    PubMed  Google Scholar 

  • Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B (2008) Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 508:906–926

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13:13–16

    PubMed  CAS  Google Scholar 

  • Pandya DN, Seltzer B (1982a) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210

    PubMed  CAS  Google Scholar 

  • Pandya DN, Seltzer B (1982b) Association areas of the cerebral cortex. Trends Neurosci 5:386–390

    Google Scholar 

  • Pandya DN, Dye P, Butters N (1971a) Efferent corticocortical projections of the prefrontal cortex of the rhesus monkey. Brain Res 31:35–46

    PubMed  CAS  Google Scholar 

  • Pandya DN, Karol EA, Heilbronn D (1971b) The topographic distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32:31–43

    PubMed  CAS  Google Scholar 

  • Pandya DN, Van Hoesen GW, Mesulam M-M (1981) Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319–330

    PubMed  CAS  Google Scholar 

  • Paquier PF, Mariën P (2005) A synthesis of the role of the cerebellum in cognition. Aphasiology 19:3–19

    Google Scholar 

  • Parker GJM, Luzzi S, Alexander DC, Wheeler-Kingshott CAM, Clecarelli O, Ralph MAL (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24:656–666

    PubMed  Google Scholar 

  • Patterson K, Lambon Ralph MA (1999) Selective disorders of reading? Curr Opin Neurobiol 9:235–239

    PubMed  CAS  Google Scholar 

  • Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8:287–299

    PubMed  CAS  Google Scholar 

  • Pause M, Kunesch E, Binkofski F, Freund H-J (1989) Sensorimotor disturbance in patients with lesions of the parietal cortex. Brain 112:1599–1625

    PubMed  Google Scholar 

  • Paxinos G, Mai JK (2004) The human nervous system, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Penfield W, Faulk ME (1955) The insula: further observations on its function. Brain 78:445–470

    PubMed  CAS  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New York

    Google Scholar 

  • Peretz I, Coltheart M (2003) Modularity of music processing. Nat Neurosci 6:688–691

    PubMed  CAS  Google Scholar 

  • Peters A, Jones EG (eds) (1984–1994) Cerebral cortex, vol 1–10. Plenum, New York

    Google Scholar 

  • Petrides M (2006) Broca’s area in the human and the nonhuman primate brain. In: Grodzinsky Y, Amunts K (eds) Broca’s region. Oxford University Press, Oxford, pp 31–46

    Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (2001) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310

    Google Scholar 

  • Petrides M, Pandya DN (2004) The frontal cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 950–972

    Google Scholar 

  • Petrides M, Pandya DN (2006) Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J Comp Neurol 498:227–251

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 27:11573–11586

    PubMed  CAS  Google Scholar 

  • Petrides M, Cadoret G, Mackey S (2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 435:1235–1238

    PubMed  CAS  Google Scholar 

  • Phillips ML, Young AW, Senior C, Brammer M, Andrew C, Calder AJ et al (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495–498

    PubMed  CAS  Google Scholar 

  • Phillips ML, Young AW, Scott SK, Calder AJ, Andrew C, Giampietro V et al (1998) Neural responses to facial and vocal expressions of fear and disgust. Proc R Soc Lond B 265:1789–1817

    Google Scholar 

  • Picard N, Strick PL (1996) Medial wall motor areas: a review of their location and functional activation. Cereb Cortex 6:342–353

    PubMed  CAS  Google Scholar 

  • Pick A (1892) Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr 17:165–167

    Google Scholar 

  • Pihlajamäki M, Jaukiainen AM, Soininen M (2009) Structural and functional MRI in mild cognitive impairment. Curr Alzheimer Res 6:179–185

    PubMed  Google Scholar 

  • Postuma R, Gagnon J, Vendette M, Fantini M, Massicotte-Marquez J, Montplaisir J (2009) Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 72:1296–1300

    PubMed Central  PubMed  CAS  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1989) Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J Comp Neurol 282:293–316

    PubMed  CAS  Google Scholar 

  • Probst M (1901) Ueber den Bau des vollständig balkenloses Grosshirnes sowie über Mikrogyrie und Heterotopie der grauen Substanz. Arch Psychiatry 34:709–786

    Google Scholar 

  • Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72

    PubMed  CAS  Google Scholar 

  • Ramachandran VS, Oberman LM (2006) Broken mirrors: a theory of autism. Sci Am 295:62–69

    PubMed  Google Scholar 

  • Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 434:147–157

    PubMed  CAS  Google Scholar 

  • Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621

    PubMed  CAS  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 91:2578–2589

    Google Scholar 

  • Raybaud CA, Girard N (1998) Étude anatomique par IRM des agénésies et dysplasies commissurales télencéphaliques. Neurochirurgie 44(Suppl 1):38–60

    PubMed  CAS  Google Scholar 

  • Raybaud CA, Girard N (1999) The developmental disorders of the commissural plate of the telencephalon: MR imaging study and morphologic classification. Nerv Syst Child 24:348–357

    Google Scholar 

  • Renner JA, Burns JM, Hou CE, McKeel DW Jr, Storandt M, Morris JC (2004) Progressive posterior cortical dysfunction. A clinicopathologic series. Neurology 63:1175–1180

    PubMed  CAS  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    PubMed  Google Scholar 

  • Rizzolatti G, Sinigaglia C (2008) Mirrors in the brain. How our minds share actions and emotions. Oxford University Press, Oxford

    Google Scholar 

  • Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141

    CAS  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154

    PubMed  CAS  Google Scholar 

  • Roland PE (1984) Metabolic measurement of the working frontal cortex in man. Trends Neurosci 7:430–435

    Google Scholar 

  • Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55:11–29

    PubMed  Google Scholar 

  • Román GC (2007) Vascular dementia. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby Elsevier, Philadelphia, PA, pp 635–643

    Google Scholar 

  • Román GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC (2002) Subcortical ischaemic vascular dementia. Lancet Neurol 1:426–436

    PubMed  Google Scholar 

  • Romanski LM, Bates JF, Goldman-Rakic PS (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157

    PubMed  CAS  Google Scholar 

  • Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR et al (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12:107–115

    PubMed  Google Scholar 

  • Rosano C, Sweeney JA, Melchitzky DS, Lewis DA (2003) The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Res 972:16–30

    PubMed  CAS  Google Scholar 

  • Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M et al (2002a) Patterns of brain atrophy in frontotemporal dementia and dementia. Neurology 58:198–208

    PubMed  CAS  Google Scholar 

  • Rosen HJ, Perry RJ, Murphy J, Kramer JH, Mychack P, Schuff N et al (2002b) Emotion comprehension in the temporal variant of frontotemporal dementia. Brain 125:2286–2295

    PubMed  Google Scholar 

  • Ross ED (2000) Affective prosody and the aprosodias. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 316–331

    Google Scholar 

  • Ross ED (2008) Sensory-specific amnesia and hypoemotionality in humans and monkeys: gateway for developing a hodology of memory. Cortex 44:1010–1022

    PubMed  Google Scholar 

  • Rosso SM, Donker Kaat KL, Baks T, Joosse M, de Koning I, Pijnenburg Y et al (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126:2016–2022

    PubMed  Google Scholar 

  • Sakata H (2003) The role of the parietal cortex in grasping. Adv Neurol 93:121–139

    PubMed  Google Scholar 

  • Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438

    PubMed  CAS  Google Scholar 

  • Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357

    PubMed  CAS  Google Scholar 

  • Saleem KS, Kondo H, Price JL (2008) Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J Comp Neurol 506:659–693

    PubMed  Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. Springer, Heidelberg

    Google Scholar 

  • Sarkissov SA, Filiminoff IN, Kononowa EP, Preobraschenskaya SN, Kukuew LA (1955) Atlas of the cytoarchitecture of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry M et al (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schiffmann R, van der Knaap MS (2009) An MRI-based approach to the diagnosis of white matter disorders. Neurology 72:750–759

    PubMed Central  PubMed  Google Scholar 

  • Schiller F (1992) Paul Broca. Explorer of the brain. Oxford University Press, New York

    Google Scholar 

  • Schmahmann JD, Pandya DN (1990) Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. J Comp Neurol 295:299–326

    PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Google Scholar 

  • Schmahmann JD, Pandya DN (2008) Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex 44:1037–1066

    PubMed Central  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    PubMed  Google Scholar 

  • Seitz RJ, Binkofski F (2003) Modular organization of parietal lobe functions as revealed by functional activation studies. Adv Neurol 93:281–292

    PubMed  Google Scholar 

  • Selemon DL, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  CAS  Google Scholar 

  • Showers MJC, Lauer EW (1961) Somatovisceral motor patterns in the insula. J Comp Neurol 117:107–115

    PubMed  CAS  Google Scholar 

  • Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21:2749–2758

    PubMed  CAS  Google Scholar 

  • Shu T, Li Y, Keller A, Richards LJ (2003) The glial sling is a migratory population of developing neurons. Development 130:2929–2937

    PubMed Central  PubMed  CAS  Google Scholar 

  • Signoret J-L, Castaigne P, Lhermitte F, Abelanet R, Lavorel P (1984) Rediscovery of Leborgne’s brain. Anatomic description with CT scan. Brain Lang 22:303–319

    PubMed  CAS  Google Scholar 

  • Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124:1720–1733

    PubMed  CAS  Google Scholar 

  • Snowden JS, Goulding PJ, Neary D (1989) Semantic dementia: a form of circumscribed atrophy. Behav Neurol 2:167–182

    Google Scholar 

  • Snowden JS, Bathgate D, Varma A, Blachshaw A, Gibbons Z, Neary D (2001) Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J Neurol Neurosurg Psychiatry 70:323–332

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sonty PS, Mesulam M-M, Thompson CK, Johnson N, Weintraub S, Parrish TB et al (2003) Primary progressive aphasia: PPA and the language network. Ann Neurol 53:35–49

    PubMed  Google Scholar 

  • Sorger B, Goebel R, Schiltz C, Rossion B (2007) Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35:836–852

    PubMed  Google Scholar 

  • Sperry RW (1967) Mental unity following surgical disconnection of the cerebral hemispheres. Harvey Lect 62:293–323

    CAS  Google Scholar 

  • Sperry RW, Gazzaniga MS, Bogen JE (1969) Interhemispheric relationships: the neocortical commissures; syndromes of hemispheric disconnection. Handb Clin Neurol 4:273–290

    Google Scholar 

  • Springer S, Deutsch G (1993) Left brain, right brain. Freeman, New York

    Google Scholar 

  • Steinthal P (1871) Abriss der Sprachwissenschaft. Dümmler, Berlin

    Google Scholar 

  • Stephan KE, Fink GR, Marshall JC (2007) Mechanisms of hemispheric specialization: insights from analyses of connectivity. Neuropsychologia 45:209–228

    PubMed Central  PubMed  Google Scholar 

  • Stevens T, Livingston G, Kitchen G, Manela M, Walker I, Katona C (2002) Islington study of dementia subtypes in the community. Br J Psychiatry 180:270–276

    PubMed  Google Scholar 

  • Stiles-Davis J, Janowsky J, Engel M, Nass R (1988) Drawing ability in four young children with congenital unilateral brain lesions. Neuropsychologia 26:359–371

    PubMed  CAS  Google Scholar 

  • Studholme C, Cardenas V, Blumenfeld R, Schuff N, Rosen HJ, Miller BL et al (2004) Deformation tensor morphometry of semantic dementia with quantitative validation. Neuroimage 21:1387–1398

    PubMed  CAS  Google Scholar 

  • Sunderland S (1940) The distribution of commissural fibers in the corpus callosum in the macaque monkey. J Neurol Psychiatry 3:9–18

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tanaka Y, Iwasa H, Obayashi T (1990) Right hand agraphia and left hand apraxia following callosal damage in a right-hander. Cortex 26:665–671

    PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Renier W, Hamel B, Hori A, Verbist B (2006) Development and developmental disorders of the cerebral cortex. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: development and developmental disorders of the human central nervous system. Springer, Heidelberg, pp 429–518

    Google Scholar 

  • Tervaniemi M, Hugdahl K (2003) From sounds to music – towards understanding the neurocognition of musical sound perception. Brain Res Rev 43:231–246

    PubMed  Google Scholar 

  • Tesak J, Code C (2008) Milestones in the history of aphasia: theories and protagonists. Taylor & Francis, Hove

    Google Scholar 

  • Thiebaut de Schotten M, Kinkingnéhun S, Delmaire C, Lehéricy S, Duffau H, Thivard L et al (2008) Visualization of disconnection syndromes in humans. Cortex 44:1097–1103

    PubMed  Google Scholar 

  • Thier P, Andersen RA (1998) Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal corte. J Neurophysiol 80:1713–1735

    PubMed  CAS  Google Scholar 

  • Toga AW, Thompson PM (2007) What is where and why it is important. Neuroimage 37:1045–1049

    PubMed Central  PubMed  Google Scholar 

  • Toga AW, Thompson PM, Sowell ER (2006a) Mapping brain maturation. Trends Neurosci 29:148–159

    PubMed Central  PubMed  CAS  Google Scholar 

  • Toga AW, Thompson PM, Mori S, Amunts K, Zilles K (2006b) Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242

    PubMed  CAS  Google Scholar 

  • Tootell RBH, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998) From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2:174–183

    PubMed  CAS  Google Scholar 

  • Trevarthen C (1984) Hemispheric specialization. In: Darian-Smith A (ed) Handbook of physiology, sect 1: the nervous system, vol III, Sensory processes. American Physiological Society, Bethesda, MD, pp 1129–1190

    Google Scholar 

  • Trojanowski JQ, Dickson DW (2001) Update on the neuropathological diagnosis of frontotemporal dementias. J Neuropathol Exp Neurol 60:1123–1126

    PubMed  CAS  Google Scholar 

  • Türe U, Yas¸argil MG, Pait TG (1997) Is there a superior occipitofrontal fasciculus? A microsurgical anatomic study. Neurosurgery 40:1226–1232

    PubMed  Google Scholar 

  • Türe U, Yas¸argil DC, Al-Mefty O, Yas¸argil MG (1999) Topographic anatomy of the insular region. J Neurosurg 90:720–733

    PubMed  Google Scholar 

  • Türe U, Yas¸argil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–427

    PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual system. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT, Cambridge, MA, pp 549–586

    Google Scholar 

  • Vallar G, Bottini G, Paulesu E (2003) Neglect syndromes: the role of parietal cortex. Adv Neurol 93:293–319

    PubMed  Google Scholar 

  • van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • van der Zee J, Sleegers K, Van Broeckhoven C (2008) The Alzheimer disease – frontotemporal lobar degeneration spectrum. Neurology 71:1191–1197

    PubMed  Google Scholar 

  • Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) The cerebral cortex, vol 3. Plenum, London, pp 259–329

    Google Scholar 

  • Van Essen DC, Newsome WT, Maunsell JHR, Bixby JL (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy condensations. J Comp Neurol 244:451–480

    PubMed  Google Scholar 

  • van Lieshout A, Renier W, Eling P, de Bot K, Slis I (1990) Bilangual language processing after a lesion in the left thalamic and temporal regiona. A case report with early childhood onset. Brain Lang 38:173–194

    PubMed  Google Scholar 

  • Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do. Nat Rev Neurosci 10:792–802

    PubMed  CAS  Google Scholar 

  • Veldhuizen MG, Bender G, Constable RT, Small DM (2007) Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Senses 32:569–581

    PubMed  Google Scholar 

  • Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533–544

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol (Lpz) 25:279–461

    Google Scholar 

  • Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 359:490–506

    PubMed  CAS  Google Scholar 

  • Vogt BA, Hof PR, Vogt LJ (2004) Cingulate gyrus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 915–949

    Google Scholar 

  • Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    PubMed Central  PubMed  Google Scholar 

  • von Bonin G, Bailey P (1947) The Neocortex of Macaca mulatta. University of Illinois Press, Urbana, IL

    Google Scholar 

  • von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London

    Google Scholar 

  • von Economo C, Horn L (1930) Über Windingsrelief, Maβe und Rindenarchitektonik der Supratemporalfläche. Z Ges Neurol Psychatr 130:678–757

    Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Heidelberg, English translation by LC Triarhou (2008) Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex. Karger, Basel

    Google Scholar 

  • Wada JA, Clarke R, Hamm A (1975) Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adult and 100 infant brains. Arch Neurol 32:239–246

    PubMed  CAS  Google Scholar 

  • Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138

    PubMed  CAS  Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Google Scholar 

  • Wallesch CW, Johannsen-Horbach H, Bartels C, Herrmann M (1997) Mechanisms of and misconceptions about subcortical aphasia. Brain Lang 58:403–409

    PubMed  CAS  Google Scholar 

  • Wang P-N, Miller BL (2007) Clinical aspects of frontotemporal dementia. In: Miller BL, Cummings JL (eds) The human frontal lobes. Functions and disorders, 2nd edn. Guilford, New York, pp 365–381

    Google Scholar 

  • Wang G-J, Tomasi D, Backus W, Wang R, Telang F, Geliebter A et al (2008) Gastric distention activates satiety circuitry in the human brain. Neuroimage 39:1824–1831

    PubMed  Google Scholar 

  • Weintraub S, Mesulam M-M (2009) With or without FUS, it is the anatomy that predicts the dementia phenotype. Brain 132:2906–2908

    PubMed Central  PubMed  Google Scholar 

  • Weintraub S, Rubin NP, Mesulam M-M (1990) Primary progressive aphasia. Longitudinal course, neuropsychological profile, and language features. Arch Neurol 47:1329–1335

    PubMed  CAS  Google Scholar 

  • Wernicke C (1874) Der aphasische symptomencomplex. Ein psychologische Studie auf anatomischer Basis. Cohn & Weigert, Breslau

    Google Scholar 

  • Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13:1–7

    PubMed  CAS  Google Scholar 

  • Westbury C, Bub D (1997) Primary progressive aphasia: a review of 112 cases. Brain Lang 60:381–406

    PubMed  CAS  Google Scholar 

  • Westerhausen R, Grüner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329

    PubMed  Google Scholar 

  • Whitehouse AJO, Bishop DVM (2009) Hemisphere division of function is the result of independent probabilistic biases. Neuro­psychologia 47:1938–1943

    PubMed Central  PubMed  Google Scholar 

  • Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE et al (2007) Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain 130:708–719

    PubMed Central  PubMed  Google Scholar 

  • Wildgruber D, Ackermann H, Grodd W (2001) Differential conditions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage 13:101–119

    PubMed  CAS  Google Scholar 

  • Wildgruber D, Ethofer T, Grandjean D, Kreifelts B (2009) A cerebral network of speech prosody comprehension. Int J Speech Lang Pathol 11:277–281

    Google Scholar 

  • Williams JHG, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism. Neurosci Biobehav Rev 25:287–295

    PubMed  CAS  Google Scholar 

  • Wilms M, Eickhoff SB, Hömke L, Rottschy C, Kujovic M, Amunts K, Fink GR (2010) Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v and V4(v). Neuro­image 49:1171–1179

    PubMed  Google Scholar 

  • Wise RJS (2003) Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 65:95–119

    PubMed  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    PubMed  CAS  Google Scholar 

  • Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112:799–835

    PubMed  Google Scholar 

  • Yeterian EH, Pandya DN (1985) Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J Comp Neurol 237:408–426

    PubMed  CAS  Google Scholar 

  • Young AW, Perrett DI (1992) Face recognition impairments. Phil Trans R Soc Lond B 335:47–53

    CAS  Google Scholar 

  • Zald DH, Kim SW (1996a) Anatomy and function of the orbitofrontal cortex. I. Anatomy, neurocircuitry, and obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci 8:125–138

    PubMed  CAS  Google Scholar 

  • Zald DH, Kim SW (1996b) Anatomy and function of the orbitofrontal cortex. II. Function and relevance to obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci 8:249–261

    PubMed  CAS  Google Scholar 

  • Zangwill OL (1979) Two cases of crossed aphasia in dextrals. Neuro­psychologia 17:167–172

    PubMed  CAS  Google Scholar 

  • Zarei M, Johansen-Berg H, Smith S, Ciccarelli O, Thompson AJ, Matthews PM (2006) Functional anatomy of interhemispheric cortical connections in the human brain. J Anat (Lond) 209:311–320

    Google Scholar 

  • Zatorre RJ, Gandour JT (2008) Neural specializations for speech and pitch: moving beyond the dichotomies. Phil Trans R Soc B 363:1087–1104

    PubMed Central  PubMed  Google Scholar 

  • Zilles K (2004) Architecture of the human cerebral cortex. Regional and laminar organization. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Amsterdam, Elsevier, pp 997–1055

    Google Scholar 

  • Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339

    PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14:S8–S20

    PubMed  CAS  Google Scholar 

  • Zilles K, Eickhoff S, Palomero-Gallagher N (2003) The human parietal cortex: a novel approach to its architectonic mapping. Adv Neurol 93:1–21

    PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat (Lond) 205:417–432

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2011). The Cerebral Cortex and Complex Cerebral Functions. In: Clinical Neuroanatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19134-3_15

Download citation

Publish with us

Policies and ethics