Topographic RossbyWaves in Basins of Simple Geometry

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM, volume 2)


In the last chapter, topographic Rossby-waves on the f-plane were studied with emphasis of their mathematical description as extracted from the governing equations of fluid mechanics. Their possible observation by synoptic measurements was also discussed: they pertain to horizontal velocity and temperature-time series from moored thermistor chains and current recorders. It was shown by appropriately scaling the adiabatic Boussinesq approximated equations that in lakes with shallow epilimnion and deep hypolimnion – more specifically lakes which satisfy the so-called Gratton-scaling – the barotropic-baroclinic coupling is one-sided from the barotropic to the baroclinic TWs but not vice versa. In other words, if a topographic wave or a free or wind-induced oscillation in a lake, whose spectral component can be associated with a barotropic topographic wave mode, is acting in a lake, then this spectral component exerts a sizeable effect on the vertical baroclinic water movement which is (in principle) measurable in isotherm–depth–time series. Conversely, a baroclinic wave signal has a negligible influence on the barotropic TW response. This implies that for all those lakes whose geometry and stratification falls into the range of Gratton’s scaling – most Alpine lakes satisfy this scaling – the spectral structure can be found from the spectral analysis of the TW-operator, yet observational inferences can be drawn not only from cross-correlation analyses of moored current meters but equally also from such analyses involving isotherm–depth or temperature–time series.


Dispersion Relation Stream Function Conformal Mapping Orthogonal Coordinate System Bornholm Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramowitz, M. and Stegun, I. A.: Handbook of mathematical functions. Dover (1972)Google Scholar
  2. 2.
    Allen, J. S.: Coastal trapped waves in a stratified ocean. J. Phys. Oceanogr., 5, 300–325 (1975)CrossRefGoogle Scholar
  3. 3.
    Ball, K. F.: Second class motions of a shallow liquid. J. Fluid Mech., 23, 545–561 (1965)CrossRefGoogle Scholar
  4. 4.
    Ball, K. F.: Edge waves in an ocean of finite depth. Deep Sea Res., 14, 79–88 (1967)Google Scholar
  5. 5.
    Brink, K. H.: Propagation of barotropic continental shelf waves over irregular bottom topography. J. Phys. Oceanogr., 10, 765–778 (1980)CrossRefGoogle Scholar
  6. 6.
    Brink, K. H.: A comparsion of long coastal trapped wave theory with observations of Peru. J. Phys. Oceanogr., 12, 897–913 (1982)CrossRefGoogle Scholar
  7. 7.
    Buchwald, V. T. and Adams J. K.: The propagation of continental shelf waves. Proc. Roy. Soc., A305, 235–250 (1968)CrossRefGoogle Scholar
  8. 8.
    Buchwald, V. T. and Melville, W. K.: Resonance of shelf waves near islands. In Lecture Notes in Physics, vol. 64, edited by D.G. Provis and R. Radok, 202–205, Springer, New York (1977)Google Scholar
  9. 9.
    Djurfeldt, L.: A unified derivation of divergent second-class topographic waves. Tellus, 36A, 306–312 (1984)Google Scholar
  10. 10.
    Gratton, Y.: Low frequency vorticity waves over strong topography. Ph.D. thesis, Univ. of British Columbia, 132 pp. (1983)Google Scholar
  11. 11.
    Gratton, Y. and LeBlond, P. H.: Vorticity waves over strong topography. J. Phys. Oceanogr., 16, 151–166 (1986)CrossRefGoogle Scholar
  12. 12.
    Hogg, H. G.: Observations of internal Kelvin waves trapped round Bermuda. J. Phys. Oceanogr., 10, 1353–1376 (1980)CrossRefGoogle Scholar
  13. 13.
    Huthnance, J. M.: On trapped waves over a continental shelf. J. Fluid Mech., 69, 689–704 (1975)CrossRefGoogle Scholar
  14. 14.
    Johnson, E. R.: Topographic waves in elliptical basins. Geophys. Astrophys. Fluid Dyn., 37, 279–295 (1987a)CrossRefGoogle Scholar
  15. 15.
    Johnson, E. R.: A conformal mapping technique for topographic wave problems. J. Fluid Mech., 177, 395–405 (1987b)CrossRefGoogle Scholar
  16. 16.
    Koutitonsky, V. G.: Subinertial coastal-trapped waves in channels with variable stratification and topography PH.D. thesis, Marine Sciences Res. Center, State Univ. New York, Stony Brook (1985)Google Scholar
  17. 17.
    Lamb, H.: Hydrodynamics. 6th ed. Cambridge University Press (1932)Google Scholar
  18. 18.
    Larsen, J. C.: Long waves along a single-step topography in a semi-infinite uniformly rotating ocean. J. Mar. Res., 27, 1–6 (1969)Google Scholar
  19. 19.
    LeBlond, P. H. and Mysak, L. A.: Waves in the Ocean. Elsevier (1980)Google Scholar
  20. 20.
    Lie, H.-J.: Shelf waves on the exponential, linear and sinusoidal bottom topographies. Bull: KORD1, 5, 1–8 (1983)Google Scholar
  21. 21.
    Lie, H.-J. and El-Sabh, M. I.: Formation of eddies and transverse currents in a two-layer channel of variable bottom: Applications to the lower St. Lawrence estuary. J. Phys. Oceanogr., 10, 1063–1075 (1983)Google Scholar
  22. 22.
    Miles, J. W. and Ball, F. K.: On free-surface oscillations in a rotating paraboloid. J. Fluid Mech., 17, 257–266 (1963)CrossRefGoogle Scholar
  23. 23.
    Mysak, L. A.: On the theory of continental shelf waves. J. Mar. Res., 25, 205–227 (1967)Google Scholar
  24. 24.
    Mysak, L.A.: Edgewaves on a gently sloping continental shelf of finite width. J. Mar. Res., 26, 24–33 (1968)Google Scholar
  25. 25.
    Mysak, L. A.: Topographically trapped waves. Ann. Rev. Fluid Mech., 12, 45–76 (1980a)CrossRefGoogle Scholar
  26. 26.
    Mysak, L. A.: Recent advances in shelf wave dynamics. Review of Geophysics and Space Physics, 18, 211–241 (1980b)CrossRefGoogle Scholar
  27. 27.
    Mysak, L. A.: Elliptical topographic waves. Geophs. Astrophys. Fluid Dyn., 31, 93–135 (1985)CrossRefGoogle Scholar
  28. 28.
    Mysak, L. A., Salvadè, G., Hutter, K. and Scheiwiller, T.: Topographic waves in an elliptical basin with application to the Lake of Lugano. Phil. Trans. R. Soc. London, A 316, 1–55 (1985)Google Scholar
  29. 29.
    Ou, H. W.: On the propagation of the topographic Rossby waves near continental margins. Part 1: Analytical model for a wedge. J. Phys. Oceanogr., 19, 1051–1060 (1980)Google Scholar
  30. 30.
    Pearson, C. E.: Handbook of Applied Mathematics. VNR Company (1974)Google Scholar
  31. 31.
    Reid, R. O.: Effect of Coriolis force on edge waves. I: Investigation of the normal modes. J. Mar. Res., 16, 104–144 (1958)Google Scholar
  32. 32.
    Rhines, P. B.: Slow oscillations in an ocean of varying depth. J. Fluid Mech., 37, 161–205 (1969)CrossRefGoogle Scholar
  33. 33.
    Saint-Guily, B.: Oscillations propres dans un bassin de profondeur variable: Modes de seconde classe. In Studi in Onore di Giuseppe Aliverti, 15–25. Instituto Universitario Navale di Napoli, Napoli, Italy (1972)Google Scholar
  34. 34.
    Saylor, J. H., Huang, J. S. K. and Reid, R. O.: Vortex modes in Southern Lake Michigan. J. Phys. Oceanogr., 10, 1814–1823 (1980)CrossRefGoogle Scholar
  35. 35.
    Sezawa, K. and Kanai, K.: On shallow water waves transmitted in the direction parallel to a sea coast with special reference to long waves in heterogeneous media. Bull. Earthquake Res. Inst. Tokyo, 17, 685–694 (1939)Google Scholar
  36. 36.
    Snodgrass, F. E., Munk, W. H. and Miller, G. R.: Long-period waves over California’s continental borderland. I: Background spectra. J. Mar. Res., 20, 3–30 (1962)Google Scholar
  37. 37.
    Stocker, T. and Hutter, K.: A model for topographic Rossby waves in channels and lakes. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, No 76, 1–154 (1985)Google Scholar
  38. 38.
    Stocker, T.: Topographic waves, eigenmodes and reflections in lakes and semi-infinite channels. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, No 93, 1–170 (1987)Google Scholar
  39. 39.
    Stocker, T and Hutter, K.: Topographic waves in channels and lakes on the f-plane. Lecture Notes on Ccoastal and Estuarine Studies, Springer Verlag, Berlin etc., 21, 1–178 (1987)Google Scholar
  40. 40.
    Takeda, H.: Topographically trapped waves over the continental shelf and slope. J. Oceanogr. Soc. Japan, 40, 349–366 (1984)CrossRefGoogle Scholar
  41. 41.
    Trösch, J.: Finite element calculation of topographic waves in lakes. Proceedings of the 4th Internnatl. Conf. Applied Numerical Methods, Tainan, Taiwan (1988)Google Scholar
  42. 42.
    Wenzel, M.: Interpretation der Wirbel im Bornholm becken durch topographische Rossby Wellen in einem Kreisbecken. Diplomarbeit, Christian Albrechts Universität Kiel. 52 pp. (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.c/o Versuchsanstalt für Wasserbau Hydrologie und Glaziologie ETH-ZentrumETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  3. 3.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia

Personalised recommendations