Skip to main content

Topographic Waves in Enclosed Basins: Fundamentals and Observations

  • Chapter
  • First Online:
Physics of Lakes

Abstract

In Sect. 11.2, the notions of first and second class waves were introduced. The former were said to be due to the action of the gravity force. These waves are therefore also called gravity waves. The latter are due to the rotation of the Earth and cease to exist when the frame of reference is inertial. These waves are alternatively also termed Rossby-, vortex-, geostrophic or gyration-waves, see Fig. 19.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the derivation of (19.1), see Sect. 11.3 and for a first attempt of interpretation Sect. 9.2 of Chap. 9 in Volume I. An elegant derivation follows from the conservation law of barotropic potential vorticity, which requires (see (5.74)–(5.79) in Chap. 5 in Volume I of this book series)

    $$\begin{array}{rcl} \frac{\mathrm{d}{\Pi }_{bt}} {\mathrm{d}t} = \frac{\mathrm{d}} {\mathrm{d}t}\left (\frac{\zeta + f} {H} \right ) = 0,& & \\ \end{array}$$

    in which ζ = ω z  = ∂v ∕ ∂x − ∂u ∕ ∂y = E[Ψ]. Therefore,

    $$\begin{array}{rcl} \frac{1} {H} \frac{\partial {\omega }_{z}} {\partial t} + \frac{\partial } {\partial x}\left (\frac{{\omega }_{z} + f} {H} \right )u + \frac{\partial } {\partial y}\left (\frac{{\omega }_{z} + f} {H} \right )v = 0,& & \\ \end{array}$$

    which, after linearization, is equivalent to (19.1).

  2. 2.

    For a biographical sketch see Fig. 19.1.

  3. 3.

    There is a vast literature on TWs. A reference text may be LeBlond and Mysak [27] who treat primarily waves in the open ocean. A review, perhaps more adequate to the present topic is by Stocker and Hutter [42] and contains a large number of references pertaining to the propagation of TWs in closed or semi-closed basins. Relevant works are also by Stocker and Hutter [404344] and Johnson [202122], Willmott and Johnson [50], Johnson and Kaoullas [23] and others.

  4. 4.

    Mysak et al. [33, p. 52] list six arguments in support of the TW-model and only the above mentioned discrepancy in the phase relation against it.

  5. 5.

    With \(f = 1{0}^{-4}\,\mathrm{{s}}^{-1},\;g\prime = 0.02\,\mathrm{{ms}}^{-2},\;{D}_{1} = 10\,\mathrm{m},\;{D}_{2} = 270\,\mathrm{m}\) and \({\psi }_{0} = U \cdot L \cdot ({D}_{1} + {D}_{2}) = 0.03 \cdot 1{0}^{4} \times 270\,\mathrm{{m}}^{3}\,\mathrm{{s}}^{-1}\), where U is a velocity scale (approximately 3 cm s − 1 for Lake of Lugano) and L = 104 m, one obtains \({\zeta }_{0} = 40\,\mathrm{m}\).

  6. 6.

    With f = 10 − 4 s − 1,  g′ = 0. 02 ms − 2,  ψ0 = 7 ×104 m3 s − 1 and D 2 = 270 m, (19.21) yields ζ0 = 1 m. Alternatively, using τ0 = ρair c d U w 2 with ρair = 1. 29 kg m − 3,  c d  = 1. 85 ×10 − 3 (an average value for lakes during summer, see Simons [39], p. 92), and U w  = 4 ms − 1, we find τ0 = 0. 038 Nm − 2 and hence according to (19.21), ζ0 = 1. 5 m and according to (19.20), U = τ0 ∕ (ρ1 fD 1) = 3. 8 cm s − 1. Both values are typical observations in Lake Zurich and Lake of Lugano, see Table 19.3.

  7. 7.

    This solution in an elliptic basin with parabolic bottom is constructed in Chap. 20, Sect. 20.3.3.

  8. 8.

    These equations actually imply a statement regarding \(\mathcal{L}\prime ({D}_{1}\vec{{u}}_{1} + {D}_{2}{h}_{2}\vec{{u}}_{2}) \cdot \hat{\vec{ n}}\) rather than the mass transport itself. However, if \(\mathcal{L}g = 0\) along \(\partial \mathcal{D}\) for all time, then necessarily g = 0 as well.

  9. 9.

    Recall that \((\hat{\vec{k}} \times \nabla \psi ) \cdot \nabla {h}^{-1} = 0\) for all times implies that \({\mathcal{L}}^{-1}\{(\hat{\vec{k}} \times \nabla \psi ) \cdot \nabla {h}^{-1}\} = 0.\)

  10. 10.

    We assume the reader to be familiar with the method of the Principle of Weighted Residuals, see e.g. Finlayson [8]. The principle or method of weighted residuals (MWR) is based on the following mathematical equivalence: Let \(f(\vec{x})\) be a function or functional whose value vanishes for all \(\vec{x} \in \mathcal{D}\subset {\mathbb{R}}^{N}\):

    $$\begin{array}{rcl} f(\vec{x}) = 0\quad \mbox{ for all }\vec{x} \in \mathcal{D}\subset {\mathbb{R}}^{N}.& & \end{array}$$
    (19.53)

    Let, moreover, \(\delta {\phi }_{\alpha }(\vec{x})\) be an arbitrary bounded function from a set {δϕα, α = 1, 2, }. Obviously, (19.53) implies

    $$\begin{array}{rcl} {\int \nolimits \nolimits }_{\mathcal{D}}\delta {\phi }_{\alpha }(\vec{x})f(\vec{x})\mathrm{d}\vec{x} = 0\qquad (\alpha = 1, 2,\ldots ).& & \end{array}$$
    (19.54)

    If (19.54) holds for any complete set of δϕα, then (19.54) also implies (19.53). This equivalence statement lies at the heart of the MWR.

  11. 11.

    An estimate for [P ∕ ρ ∗ ] is obtained as follows: Under hydrostatic conditions the last of (19.51) suggests that [P ∕ ρ ∗ ] ∼ (Δρ ∕ ρ)g[D], where Δρ ∕ ρ is the density anomaly and [D] a typical metalimnion thickness: Thus, with Δρ ∕ ρ ∼ 10 − 3 and [D] ≤ 10 m this yields [P ∕ ρ ∗ ] ≤ 10 − 1m2 s − 2, implying \(\mathbb{B} \leq 1{0}^{-1}\).

  12. 12.

    This argument can even be made more forceful by recognizing that according to (19.58)3 an estimate for H 1 is 10 m (n = 1) so that λ1 = 10 − 3 ×104 ∕ 102 = 10 − 1. Consequently, one baroclinic–barotropic coupling term is about a factor of 100 larger than the corresponding barotropic–baroclinic term.

  13. 13.

    Here, we use the definition ⟨⟨f, g⟩⟩ =  ∫ − H ζfgdz.

References

  1. Abramowitz, M. and Stegun, I. A.: Handbook of mathematical functions. Dover (1972)

    Google Scholar 

  2. Ball, K. F.: Second class motions of a shallow liquid. J. Fluid Mech., 23, 545–561 (1965)

    Article  Google Scholar 

  3. Bäuerle, E.: Topographic waves in the Baltic Sea. Proc. XIV. Conf of Baltic Oceaographers, Gdynia (1984)

    Google Scholar 

  4. Bäuerle, E.: Internal free oscillations in the Lake of Geneva. Annales Geophysicae, 3, 199–206 (1985)

    Google Scholar 

  5. Birchfield, G. E. and Hickie, B. P.: The time dependent response of a circular basin of variable depth to wind stress. J. Phys. Oceanogr., 7, 691–701 (1977)

    Article  Google Scholar 

  6. Clarke, A. J.: Observational and numerical evidence for wind-forced coastal trapped long waves. J. Phys. Oceanogr., 7, 231–247 (1977)

    Article  Google Scholar 

  7. Csanady, G.: Topographic waves in Lake Ontario. J. Phys. Oceanogr., 6, 93–103 (1976)

    Article  Google Scholar 

  8. Finlayson, B.A.: The Method of weighted residuals and variational principles Academic Press (1972)

    Google Scholar 

  9. Gill, A. E. and Schumann, E. H.: The generation of long shelf waves by the wind. J. Phys. Oceanogr., 4, 83–90 (1974)

    Article  Google Scholar 

  10. Graf, W.: Hydrodynamics of the Lake of Geneva. Schw. Z. Hydrol., 45, 62–100 (1983)

    Google Scholar 

  11. Gratton, Y.: Low frequency vorticity waves over strong topography. Ph.D. Thesis, Univ. of British Columbia, 132 pp. (1983)

    Google Scholar 

  12. Gratton, Y. and LeBlond, P. H.: Vorticity waves over strong topography. J. Phys. Oceanogr., 16, 151–166 (1986)

    Article  Google Scholar 

  13. Huang, J. C. K. and Saylor, J.H.: Vorticity waves in a shallow basin. Dyn. Atmos. Oceans, 6, 177–196 (1982)

    Article  Google Scholar 

  14. Huthnance, J. M.: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 74–92 (1978)

    Article  Google Scholar 

  15. Hutter, K.: Strömungsdynamische Untersuchungen im Zürich- und Luganersee. Schw. Z. Hydrol., 45, 102–144 (1983)

    Google Scholar 

  16. Hutter, K.: Fundamental equations and approximations. In Hydrodynamics of Lakes. CISM 286, edited by K. Hutter, 1–37, Springer, Wien-New York (1984a)

    Google Scholar 

  17. Hutter, K.: Mathematische Vorhersage von barotropen und baroklinen Prozessen im Zürich- und Luganersee. Vierteljahreszeitschrift der Naturf. Ges., 129, 51—92 (1984b)

    Google Scholar 

  18. Hutter, K.: Waves and oscillations in the ocean and in lakes. In: Continuum mechanics in environmental sciences and geophysics (K. Hutter, ed.). Springer Verlag Vienna. New York, 79–240 (1993)

    Google Scholar 

  19. Hutter, K., Salvadè, G. and Schwab, D. J.: On internal wave dynamics in the Northern basin of Lake of Lugano. Geophys. Astrophys. Fluid Dyn., 27, 299–336 (1983)

    Article  Google Scholar 

  20. Johnson, E. R.: Topographic waves in elliptical basins. Geophys. Astrophys. Fluid Dyn., 37, 279–295 (1987a)

    Article  Google Scholar 

  21. Johnson, E. R.: A conformal mapping technique for topographic wave problems. J. Fluid Mech., 177, 395–405 (1987b)

    Article  Google Scholar 

  22. Johnson, E.R.: Topographic waves in open domains. Part I: Boundary conditions and frequency estimates. J. Fluid Mech., 200, 69–76 (1989)

    Google Scholar 

  23. Johnson, E. R. and Kaoullas, G.: Bay-trapped low-frequency oscillations in lakes. Geophys. Astrophys. Fluid Dyn., 105(1), 48–60 (2011)

    Article  Google Scholar 

  24. Kielmann, J.: The generation of eddy-like structures in a model of the Baltic Sea by low frequency wind forcing (unpublished) (1983)

    Google Scholar 

  25. Kielmann, J. and Simons, T. J.: Baroclinic circulation models. In: Hydrodynamics of lakes CISM Lecture Notes, 286 (K. Hutter, ed.), 235-285, Springer Verlag, Vienna-New York (1984)

    Google Scholar 

  26. Lamb, H.: Hydrodynamics. 6th ed. Cambridge University Press (1932)

    Google Scholar 

  27. LeBlond, P. H. and Mysak, L. A.: Waves in the Ocean. Elsevier (1980)

    Google Scholar 

  28. Marmorino, G. O.: Lowfrequency current fluctuation in Lakes Ontario. J. Geophys. Res., 84, 1206–1214 (1979)

    Article  Google Scholar 

  29. Mysak, L. A.: Recent advances in shelf wave dynamics. Review of Geophysics and Space Physics, 18, 211–241 (1980)

    Article  Google Scholar 

  30. Mysak, L. A. Topographic waves in lakes. In Hydrodynamic of Lakes, CISM 286, edited by K. Hutter, 81–128, Springer, Wien-New York. (1984)

    Google Scholar 

  31. Mysak, L. A. Elliptical topographic waves. Geophys. Astrophys. Fluid Dyn., 31, 93–135 (1985)

    Google Scholar 

  32. Mysak, L. A., Salvadè, G., Hutter, K. and Scheiwiller, T.: Lake of Lugano and topographic waves. Nature, 306, 46–48 (1983)

    Article  Google Scholar 

  33. Mysak, L. A., Salvadè, G., Hutter, K. and Scheiwiller, T.: Topographic waves in an elliptical basin with application to the Lake of Lugano. Phil. Trans. R. Soc. London, A 316, 1–55 (1985)

    Google Scholar 

  34. Poincaré, H.: Théorie des marées. Leçon de mécanique céleste, 3, Paris (1910)

    Google Scholar 

  35. Saylor, J. H., Huang, J. S. K. and Reid, R. O.: Vortex modes in Southern Lake Michigan. J. Phys. Oceanogr., 10, 1814–1823 (1980)

    Article  Google Scholar 

  36. Saylor, J. H. and Miller, G. S.: Vortex modes of particular Great Lakes basins, Great Lakes Environmental research Laboratory, Contribution, 394, NOAA, Ann Arbor, Michigan USA (1983)

    Google Scholar 

  37. Simons, T. J.: Wind-driven circulations in the South-West Baltic. Tellus, 30, 272–283 (1978a)

    Article  Google Scholar 

  38. Simons, T. J.: Generation and propagation of downwelling fronts. J. Phys. Oceanogr., 8, 571–581 (1978b)

    Article  Google Scholar 

  39. Simons, T. J.: Circulation models of lakes and inland seas. Can. Bull. Fish. Aquat., Sci., 203, 1–146 (1980)

    Google Scholar 

  40. Stocker, T. and Hutter, K.: A model for topographic Rossby waves in channels and lakes. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich, 76 (1985)

    Google Scholar 

  41. Stocker, T. and Hutter, K.: One-dimensional models for topographic Rossby waves in elongated basins on the f-plane. J. Fluid Mech., 70, 435–459 (1986)

    Article  Google Scholar 

  42. Stocker, T. and Hutter, K.: Topographic waves in channels and lakes on the f-plane. Lecture Notes on Coastal and Estuarine Studies Nr 21, Springer Verlag, Berlin etc. 176 p (1987a)

    Google Scholar 

  43. Stocker, T. and Hutter, K.: Topographic Rossby waves in rectangular basins. J. Fluid Mech., 185, 107–120 (1987b)

    Article  Google Scholar 

  44. Stocker, T. and Hutter, K.: Qualitative aspects of topographic waves in closed basins, gulfs and channels. In: Modeling Marine Systems, I. (A. M. Davies, ed.) CRC-Press, 255–289 (1990)

    Google Scholar 

  45. Stocker, T. and Johnson, E. R.: Topographic waves in open domains. Part II. Bay modes and resonances, J. Fluid Mech., 200, 77–93 (1989)

    Google Scholar 

  46. Stocker, T. and Johnson, E. R.: The trapping and scattering of topographic waves by estuaries and headlands. J. Fluid Mech., 222, 501–524 (1991)

    Article  Google Scholar 

  47. Trösch, J.: Finite element calculation of topographic waves in lakes. Proceedings of 4th International Conference on Applied Numerical Modeling, Tainan, Taiwan. 1986. Edited Han-Min, Hsio, Yo Li Chon, Shu Yi Wang, ad Sheng Jii Hsien, Vol. 63 of Science and Technology Series, 307-311 (1986)

    Google Scholar 

  48. Wang, D. P. and Mooers C. N. K.: Coastal trapped waves in a continously stratified ocean. J. Phys. Oceanogr., 6, 853–863 (1976)

    Article  Google Scholar 

  49. Wenzel, M.: Interpretation der Wirbel im Bornholm becken durch topographische Rossby Wellen in einem Kreisbecken. Diplomarbeit, Christian Albrechts Universität Kuel. 52 pp. (1978)

    Google Scholar 

  50. Willmott, A. J. and Johnson, E. R.: Topographic waves in a rotating stratifies basin Geophy. Astrophys. Fluid Dynamics, 45, 71–87 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutter, K., Wang, Y., Chubarenko, I.P. (2011). Topographic Waves in Enclosed Basins: Fundamentals and Observations. In: Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19112-1_19

Download citation

Publish with us

Policies and ethics