Advertisement

Observation and Analysis of Internal Seiches in the Southern Basin of Lake of Lugano

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM, volume 2)

Abstract

As mentioned already earlier in Chap. 15, Lake of Lugano is a lake system consisting of two large basins and a pond of much smaller size, all connected to one another. In fact, the discharge of the water masses is from the 15 km long Northern basin through the channel of Melide into the roughly S-shaped 17-km long Southern basin and from there through the 500-m long channel of Lavena into the small pond at Ponte Tresa, see Fig. 18.1. The barotropic response of the two large basins has been separately studied as has this response of the lake system as a whole. In the Southern basin, three limnigraphs, positioned at Riva San Vitale, Morcote and Agno, recorded in February 1982 water elevation oscillations with periods of 28 min and less, that could be identified with the eigenperiods of the surface seiches with amplitudes of less than 5 cm. In a further campaign in 1984, current meters were installed in the Channels of Melide and Lavena and it was found that two further longer periodic eigenoscillations were excited which were not discernible in the limnigraph records and could be interpreted as the eigenvalues of the barotropic oscillations of the lake system acting as a coupled (Helmholtz-type) resonator. The structure of the eigenmodes, i.e. the distribution of the surface elevation was relatively simple. As the eigenfrequencies (periods) increased (decreased) the eigenmodes went from simple to complex with the number of nodal lines increasing by one with each higher order mode. Qualitatively this behaviour is akin to that of a rectangular basin with constant depth, so that interpretation of the data by means of theoretical modelling is easy. Deviations of the eigenperiods and structures of the eigenfunctions from those of the rectangle are due to the bathymetry and nothing else.

Keywords

Wind Stress Nodal Line Thermocline Depth Southern Basin South Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Antenucci, J.P., Imberger, J. and Saggio, A.: Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnol. Oceanogr. 45, 1621-1638 (2000)Google Scholar
  2. 2.
    Antenucci, J.P. and Imberger, J.: On internal waves near the high-frequency limit in an enclosed basin. J. Geophys. Res. 106, C10, 22465-22474 (2001) Limnol.Odeanogr. 43, (8), 1780-1795 (1998)Google Scholar
  3. 3.
    Bäuerle, E.: Die Eigenschwingungen abgeschlossener, zweigeschichteter Wasserbecken mit variabler Topographie. Berichte aus dem Institut für Meereskunde, Kiel, 85, 126p (1981)Google Scholar
  4. 4.
    Bäuerle, E.: Internal free oscillations in the Lake of Geneva. Ann. Geophysicae, 3, 199–206 (1985)Google Scholar
  5. 5.
    Bloomfield, P.: Fourier analysis of time series: An introduction. John Wiley, New York (1976)Google Scholar
  6. 6.
    Bührer, H. and Ambühl, H.A.: Die Einleitung von gereinigtem Abwasser in Seen. Schweiz. Z. Hydrol., 37(2), 347–369 (1975)Google Scholar
  7. 7.
    Defant, A.: Physical Oceanography. Vol I, Pergamon Press, New York, (1961)Google Scholar
  8. 8.
    Defant, A.: Physical Oceanography Vol II, Pergamon Press, New York, (1961)Google Scholar
  9. 9.
    Hollan, E. and Simons, T.J.: Wind-inuced changes of temperature and currents in Lake Constance. Arch. Met. Geophys. Bioklim., A 27, 333–373 (1978)Google Scholar
  10. 10.
    Horn, W., Mortimer, C.H. and Schwab, D.J.: Wind-induced internal seiches in the Lake of Zürich observed and modelled. Limnol. Oceanogr., 31(6), 1230–1252 (1986)CrossRefGoogle Scholar
  11. 11.
    Hutter, K., Raggio, G., Bucher, C., Salvadè, G. and Zamboni, F.: The surface seiches of Lake of Lugano. Schweiz. Z. Hydr., 44, 455-484 (1982)Google Scholar
  12. 12.
    Hutter, K., Salvadè, G. and Schwab, D.J.: On internal wave dynamics in the Northern Basin of the Lake of Lugano. Geophys. Astrophys. Fluid Dyn., 27, 299–336 (1983)CrossRefGoogle Scholar
  13. 13.
    Imberger, J. and Parker, G.: Mixed layer dynamics in a lake exposed to spatially variable wind field. Limnol. Oceanogr., 30(9), 473–488 (1985)CrossRefGoogle Scholar
  14. 14.
    Mortimer, C.H.: The resonant responses of stratified lakes to wind. Schweiz. Z. Hydrol., 15, 94–151 (1953)Google Scholar
  15. 15.
    Mortimer, C.H.: Lake Hydrodynamics. Mitt. Int. V. Theor. Angew. Limnol., 20, 124–197 (1974)Google Scholar
  16. 16.
    Mortimer, C.H.: Strategies for coupling data collection and analysis with the dynamic modeling of lake motions. In: Lake Hydrodynamics (Eds. W. H. Graf and C. H. Mortimer), Elsevier, Amsterdam, 183–222E (1979)Google Scholar
  17. 17.
    Mortimer, C.H.: Internal oscillatory response of Lac Léman to wind impulses during 1977/1978 compared with wave models in rotating channels of uniform depth. Comm. Lab. Hydraul., Ecole Polytechnique Fédérale de Lausanne, 50, 1–89 (1983)Google Scholar
  18. 18.
    Mortimer, C.H. and Horn, W.: Internal wave dynamics and their implications for plankton biology in the Lake of Zürich. Vierteljahresschr. Naturforsch. Ges., Zürich, 137, 299–318 (1982)Google Scholar
  19. 19.
    Mysak, L.A., Salvadè, G., Hutter, K. and Scheiwiller, T.: Topographic waves in a stratified elliptical basin with application in the basin of Lugano. Phil. Trans. R. Soc. Lond. A, 316, 1–55 (1985)CrossRefGoogle Scholar
  20. 20.
    Ogihara, Y.: Internal Wave Energy Distribution Ph. D. Thesis, University of Western Australia, (1998)Google Scholar
  21. 21.
    Phillips, O.M.: On spectra measured in an undulating layered medium. J. Phys. Oceanogr., 1, 1–16 (1971)CrossRefGoogle Scholar
  22. 22.
    Raggio, G. and Hutter, K.: An extended channel model for the prediction of motion in elongated homogeneous lakes, Part I: Theoretical introduction. J. Fluid Mech., 121, 231–255 (1982)CrossRefGoogle Scholar
  23. 23.
    Raggio, G. and Hutter, K.: An extended channel model for the prediction of motion in elongated homogeneous lakes, Part II: First order model applied to ideal geometry. Rectangular basins with flat bottom. J. Fluid Mech., 121, 257–281 (1982)Google Scholar
  24. 24.
    Raggio, G. and Hutter, K.: An extended channel model for the prediction of motion in elongated homogeneous lakes, Part III: Free oscillations in natural basins. J. Fluid Mech., 121, 283–299 (1982)CrossRefGoogle Scholar
  25. 25.
    Rao, D.B.: Free internal oscillations in a narrow, rotating rectangular basin. Mar. Sci. Directorate, Dept. Fish. Environ., Ottawa (Canada), MS-report 43, 391–398 (1977)Google Scholar
  26. 26.
    Roget, E.: Internal Seiches and Barclinic Currents in Lake Banyoles. Ph. D. Thesis, Autonomous Unuiversity, Barcelona, 287pp. (1992)Google Scholar
  27. 27.
    Roget, E., Salvadè, G. and Zamboni, F.: Internal seiche climatology in a small lake where transversal and second vertical modes are usually observed. Limnol. Oceanogr. bf 42 (4), 663-673 (1997)Google Scholar
  28. 28.
    Saggio, A. and Imberger, J.: Internal wave weather in a stratified lake. Limnol. Oceanogr., 43(8), 1780–1795 (1998)Google Scholar
  29. 29.
    Schwab, D.J.: Internal free oscillations in Lake Ontario. Limnol. Oceanogr., 22, 700–708 (1977)CrossRefGoogle Scholar
  30. 30.
    Smith, B.T., Boyle, J.M., Garbow, B.S., Ikebe, Y., Klema, V.C. and Moler, C.B.: Matrix eigensystem routines.Eispack guides. Lecture Notes in Computer Science, 6, Eds. G. Goos and J. Harmanis, Springer, Berlin, 387p. (1974)Google Scholar
  31. 31.
    Stocker, K. and Salvadè, G.: Interne Wellen im Luganersee. Interner Bericht Nr. I/85 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich (unpublished) (1986)Google Scholar
  32. 32.
    Stocker, K. and Hutter, K.: Topographic waves in rectangular basins. J. Fluid Mech., 185, 107–120 (1987)CrossRefGoogle Scholar
  33. 33.
    Stocker, K., Hutter, K., Salvadè, G., Trösch, J. and Zamboni, F.: Observations and analysis of internal seiches in the Southern Basin of Lake of Lugano. Ann. Geophysicae, 5B, 553–568 (1987)Google Scholar
  34. 34.
    Thorpe, S.A.: On the shape of progressive internal waves. Phil. Trans. Roy. Soc. London, A 263, 563–614 (1968)Google Scholar
  35. 35.
    Thomas, E.A.: Sprungschichtneigung im Zürichsee durch Sturm. Schweiz. Z. Hydrol., 11, 527–545 (1949)Google Scholar
  36. 36.
    Thomas, E.A.: Auffällige bilogische Folgen von Sprungschichtneigungen im Zürichsee. Schweiz. Z. Hydrol., 12, 5–23 (1950)Google Scholar
  37. 37.
    Thomas, E.A.: Sturmeinfluss auf das Tiefenwasser des Zürichsees im Winter. Schweiz. Z. Hydrol., 13, 5–23 (1951)Google Scholar
  38. 38.
    Trösch, J., Salvadè, G. and Stocker, K.: Die Eigenschwingungen der durch den Kanal im Damm von Melide gekoppelten Becken des Luganersees. Schweiz. Z. Hydrol., 49, 16–28 (1987)CrossRefGoogle Scholar
  39. 39.
    Wang, D.P.: Coastal trapped waves in a baroclinic ocean. J. Phys. Oceanogr., 5, 326–333 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.c/o Versuchsanstalt für Wasserbau Hydrologie und Glaziologie ETH-ZentrumETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  3. 3.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia

Personalised recommendations