Skip to main content

Evolution, Diversity, and Habitats of Poikilohydrous Vascular Plants

  • Chapter
  • First Online:
Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

Water stress is a common environmental constraint in terrestrial ecosystems. Among the various strategies to cope with temporal lack of water, poikilohydry is an important adaptive trait under specific habitat conditions. Desiccation tolerant vascular plants are particularly common among ferns, fern allies, and angiosperms that colonize forest canopies and mainly tropical rock outcrops (e.g., granitic/gneissic inselbergs, ferricretes) where environmental conditions (e.g., high temperatures, lack of water, and soil) are harsh.

Within vascular plants poikilohydry has evolved more than a dozen times independently. Within angiosperms desiccation tolerance is absent in the basalmost angiosperm clades and has evolved in rather advanced lineages. Most species rich are ferns and fern allies (e.g., Hymenophyllaceae, Polypodiaceae, Selaginellaceae) with angiosperms (monocotyledons: Boryaceae, Cyperaceae, Poaceae, Velloziaceae; dicotyledons: e.g., Gesneriaceae, Linderniaceae, Myrothamnaceae) playing only a minor role. It can be speculated that a number of Bromeliaceae could be poikilohydrous too. The total number of desiccation tolerant vascular plant species could reach c. 1,300 (c. 1,000 ferns/fern allies, c. 300 angiosperms).

In particular, on tropical rock outcrops, desiccation-tolerant vascular plants may become dominant. Particularly characteristic are mat-forming monocotyledons that cover steep rocky slopes whereas other desiccation tolerant vascular plants occur in crevices, shallow depressions, and temporally water-filled rock pools. Prominent mat-formers on inselbergs in South America, Africa, and Madagascar are treelet-like Cyperaceae and Velloziaceae that can attain an age of several hundred years. Their stems mainly consist of adventitious roots that possess a velamen radicum that might contribute to the rapid uptake of water.

Desiccation tolerant vascular plants are most richly represented in constantly wet to seasonally dry (length of the dry season 3–8 months) tropical regions with their species numbers decreasing under desert-like climatic conditions. Centres of diversity for resurrection plants are certain tropical regions with East Africa, Madagascar, and southeastern Brazil being most speciose. In the temperate zone parts of Australia and North America are likewise rich in poikilohydric species.

Increasing human pressure (e.g., fire, quarrying) on the natural habitats of poikilohydric vascular plants is a serious threat to their long-term survival and measures for their ex situ conservation should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves RJV (1994) Morphological age determination and longevity in some Vellozia populations in Brazil. Folia Geobot Phytotaxon 29:55–59

    Article  Google Scholar 

  • Bewley JD (1995) Physiological aspects of desiccation tolerance – a retrospect. Int J Plant Sci 156:393–403

    Article  Google Scholar 

  • Dinter K (1918) Botanische Reisen in Deutsch-Südwest-Afrika. Feddes Rep Beih 3:1–169

    Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. In: Braun HJ, Carlquist S, Ozenda P, Roth I (eds) Handbuch der Pflanzenanatomie, vol 13, part 3, Spezieller Teil. Borntraeger, Berlin

    Google Scholar 

  • Gaff DF (1977) Desiccation tolerant vascular plants of Southern Africa. Oecologia 31:95–109

    Article  Google Scholar 

  • Gaff DF (1981) The biology of resurrection plants. In: Pate JS, McComb AJ (eds) The biology of Australian plants. University of Western Australia Press, Perth, pp 114–146

    Google Scholar 

  • Gaff DF (1989) Responses of desiccation tolerant “resurrection” plants to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortages. SPB Academic Publishing, The Hague, pp 264–311

    Google Scholar 

  • Gaff DF, Latz PK (1978) The occurrence of resurrection plants in the Australian flora. Aust J Bot 26:485–492

    Article  Google Scholar 

  • Hambler DJ (1961) A poikilohydrous, poikilochlorophyllous angiosperm from Africa. Nature 191:1415–1416

    Article  Google Scholar 

  • Hartung W, Schiller P, Dietz K-J (1998) The physiology of poikilohydric plants. Prog Bot 59:299–327

    CAS  Google Scholar 

  • Heil H (1924) Chamaegigas intrepidus Dtr., eine neue Auferstehungspflanze. Beitr Bot Zentralbl 41:41–50

    Google Scholar 

  • Heilmeier H, Durka W, Woitke M, Hartung W (2005) Ephemeral pools as stressful and isolated habitats for the endemic aquatic resurrection plant Chamaegigas intrepidus. Phytocoenologia 35:449–468

    Article  Google Scholar 

  • Hietz P, Briones O (1998) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305–316

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga G, Gaff DF, Zentella R (2000) New desiccation-tolerant plants, including a grass, in the central highlands of Mexico, accumulate trehalose. Aust J Bot 48:153–158

    Article  Google Scholar 

  • Kappen L, Valladares F (2007) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In: Pugnaire F, Valladares F (eds) Functional plant ecology, 2nd edn. CRC/Taylor and Francis Group, Boca Raton/London, pp 7–65

    Google Scholar 

  • Kluge M, Brulfert J (2000) Ecophysiology of vascular plants on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions, vol 146, Ecological Studies. Springer, Berlin, pp 143–174

    Google Scholar 

  • Korall P, Kenrick P (2002) Phylogenetic relationships in Selaginellaceae based on rbcL sequences. Am J Bot 89:506–517

    Article  PubMed  Google Scholar 

  • Kornás J (1977) Life-forms and seasonal patterns in the pteridophytes of Zambia. Acta Soc Bot Pol 46:669–690

    Google Scholar 

  • Nitta JH (2006) Distribution, ecology and systematics of the filmy ferns (Hymenophyllaceae) of Moorea (French Polynesia). University of California, Department of Integrative Biology, Berkeley, CA

    Google Scholar 

  • Phillips JR, Oliver MJ, Bartels D (2002) Molecular genetics of desiccation tolerant systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 319–341

    Chapter  Google Scholar 

  • Porembski S (2005) Epiphytic orchids on arborescent Velloziaceae and Cyperaceae: extremes of phorophyte specialisation. Nord J Bot 23:505–513

    Article  Google Scholar 

  • Porembski S (2006) Vegetative architecture of desiccation-tolerant arborescent monocotyledons. Aliso 22:129–134

    Google Scholar 

  • Porembski S, Barthlott W (1995) On the occurrence of a velamen radicum in tree-like Cyperaceae and Velloziaceae. Nord J Bot 15:625–629

    Article  Google Scholar 

  • Porembski S, Barthlott W (eds) (2000) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions, vol 146, Ecological studies. Springer, Berlin

    Google Scholar 

  • Porembski S, Biedinger N (2001) Epiphytic ferns for sale: influence of commercial plant collection on the frequency of Platycerium stemaria (Polypodiaceae) in coconut plantations on the southeastern Ivory Coast. Plant Biol 3:72–76

    Article  Google Scholar 

  • Porembski S, Brown G, Barthlott W (1996) A species-poor tropical sedge community: Afrotrilepis pilosa mats on inselbergs in West Africa. Nord J Bot 16:239–245

    Article  Google Scholar 

  • Porembski S, Martinelli G, Ohlemüller R, Barthlott W (1998) Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Divers Distrib 4:107–119

    Article  Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598

    Article  PubMed  CAS  Google Scholar 

  • Sazima M, Sazima I (1990) Humming bird pollination in two species of Vellozia (Liliiflorae, Velloziaceae) in southeastern Brazil. Bot Acta 103:83–86

    Google Scholar 

  • Schiller P, Wolf R, Hartung W (1999) A scanning electron microscopical study of hydrated and desiccated submerged leaves of the aquatic resurrection plant Chamaegigas intrepidus. Flora 194:97–102

    Google Scholar 

  • Szarzynski J (2000) Xeric islands. Environmental conditions on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions, vol 146, Ecological Studies, Springer, Berlin, pp 37–48

    Google Scholar 

  • Tuba Z, Proctor MCF, Csintalan Z (1998) Ecophysiological responses of homiochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Regul 24:211–217

    Article  CAS  Google Scholar 

  • van Vuuren SF (2008) Antimicrobial activity of South African medicinal plants. J Ethnopharmacol 119:462–472

    Article  PubMed  Google Scholar 

  • Vicré M, Farrant JM, Driouich A (2004) Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant Cell Environ 27:1329–1340

    Article  Google Scholar 

  • Walter H (1931) Die Hydratur der Pflanze und ihre physiologisch-ökologische Bedeutung. Gustav Fischer, Jena

    Google Scholar 

  • Walters C, Farrant JM, Pammenter NW, Berjak P (2002) Desiccation stress and damage. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 263–291

    Chapter  Google Scholar 

  • Weber A (2004) Gesneriaceae. In: Kadereit JW (ed) The families and genera of vascular plants, vol 7, Flowering plants, dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). Springer, Berlin

    Google Scholar 

  • Zotz G, Andrade J-L (1998) Water relations of two co-occurring epiphytic bromeliads. J Plant Physiol 152:545–554

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support is gratefully acknowledged for rock outcrop studies by the Deutsche Forschungsgemeinschaft. The author is deeply indebted for valuable discussions and remarks to W. Barthlott (Bonn), J.-P. Ghogue (Yaoundé), S. D. Hopper (Kew), N. Korte (Rostock), Z. Tuba (Gödöllö) and G. Zotz (Oldenburg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Porembski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Porembski, S. (2011). Evolution, Diversity, and Habitats of Poikilohydrous Vascular Plants. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_8

Download citation

Publish with us

Policies and ethics