Skip to main content

Counting Spanning Trees in Graphs Using Modular Decomposition

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6552))

Included in the following conference series:

Abstract

In this paper we present an algorithm for determining the number of spanning trees of a graph G which takes advantage of the structure of the modular decomposition tree of G. Specifically, our algorithm works by contracting the modular decomposition tree of the input graph G in a bottom-up fashion until it becomes a single node; then, the number of spanning trees of G is computed as the product of a collection of values which are associated with the vertices of G and are updated during the contraction process. In particular, when applied on a (q,q − 4)-graph for fixed q, a P 4-tidy graph, or a tree-cograph, our algorithm computes the number of its spanning trees in time linear in the size of the graph, where the complexity of arithmetic operations is measured under the uniform-cost criterion. Therefore we give the first linear-time algorithm for the counting problem in the considered graph classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Atajan, T., Yong, X., Inaba, H.: An efficient approach for counting the number of spanning trees in circulant and related graphs. Discrete Math. 310, 1210–1221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bapat, R.B., Lal, A.K., Pati, S.: Laplacian spectrum of weakly quasi-threshold graphs. Graphs and Combinatorics 24, 273–290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babel, L., Olariu, S.: On the structure of graphs with few P 4’s. Discrete Appl. Math. 84, 1–13 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, London (1974)

    Book  MATH  Google Scholar 

  6. Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-In with the modular decomposition. Algorithmica 36, 375–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, T.J.N., Mallion, R.B., Pollak, P., Roth, A.: Some methods for counting the spanning trees in labeled molecular graphs, examined in relation to certain fullerenes. Discrete Appl. Math. 67, 51–66 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, Oxford (1974)

    Google Scholar 

  9. Colbourn, C.J., Provan, J.S., Vertigan, D.: A new approach to solving three combinatorial enumeration problems on planar graphs. Discrete Appl. Math. 60, 119–129 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proc. 19th ACM Symposium on the Theory of Computing, pp. 1–6 (1987)

    Google Scholar 

  11. Courcelle, B., Delhommé, C.: The modular decomposition of countable graphs: Constructions in monadic second-order logic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 325–338. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biology 5, R57 (2004)

    Article  Google Scholar 

  14. Giakoumakis, V., Roussel, F., Thuillier, H.: On P 4-tidy graphs. Discrete Math. and Theoret. Comput. Science 1, 17–41 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Golin, M.J., Yong, X., Zhang, Y.: Chebyshev polynomials and spanning tree formulas for circulant and related graphs. Discrete Math 298, 334–364 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lipton, R.J., Rose, D., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numerical Anal. 16, 346–358 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovasz, L., Plummer, M.D.: Matching Theory. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  18. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Myrvold, W., Cheung, K.H., Page, L.B., Perry, J.E.: Uniformly-most reliable networks do not always exist. Networks 21, 417–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolopoulos, S.D., Papadopoulos, C.: The number of spanning trees in K n -complements of quasi-threshold graphs. Graphs and Combinatorics 20, 383–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nikolopoulos, S.D., Palios, L., Papadopoulos, C.: Maximizing the number of spanning trees in K n -complements of asteroidal graphs. Discrete Math. 309, 3049–3060 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nikolopoulos, S.D., Rondogiannis, P.: On the number of spanning trees of multi-star related graphs. Inform. Process. Lett. 65, 183–188 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  24. Papadopoulos, C., Voglis, C.: Drawing graphs using modular decomposition. Journal of Graph Algorithms and Applications 11, 481–511 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petingi, L., Rodriguez, J.: A new technique for the characterization of graphs with a maximum number of spanning trees. Discrete Math. 244, 351–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tinhofer, G.: Strong tree-cographs are Birkhoff graphs. Discrete Appl. Math. 22, 275–288 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y., Yong, X., Golin, M.J.: The number of spanning trees in circulant graphs. Discrete Math. 223, 337–350 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolopoulos, S.D., Palios, L., Papadopoulos, C. (2011). Counting Spanning Trees in Graphs Using Modular Decomposition. In: Katoh, N., Kumar, A. (eds) WALCOM: Algorithms and Computation. WALCOM 2011. Lecture Notes in Computer Science, vol 6552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19094-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19094-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19093-3

  • Online ISBN: 978-3-642-19094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics