Skip to main content

The Disjoint Paths Problem: Algorithm and Structure

  • Conference paper
Book cover WALCOM: Algorithms and Computation (WALCOM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6552))

Included in the following conference series:

  • 1433 Accesses

Abstract

We consider the following well-known problem, which is called the disjoint paths problem.

Input: A graph G with n vertices and m edges, k pairs of vertices (s 1,t 1),(s 2,t 2),..., (s k ,t k ) in G.

Output: (Vertex- or edge-) disjoint paths P 1, P 2, ...,P k in G such that P i joins s i and t i for i = 1,2,...,k.

This is certainly a central problem in algorithmic graph theory and combinatorial optimization. See the surveys [9, 31]. It has attracted attention in the contexts of transportation networks, VLSI layout and virtual circuit routing in high-speed networks or Internet. A basic technical problem is to interconnect certain prescribed “channels” on the chip such that wires belonging to different pins do not touch each other. In this simplest form, the problem mathematically amounts to finding vertex-disjoint trees or vertex-disjoint paths in a graph, each connecting a given set of vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, M.: Approximation algorithms for the edge-disjoint paths problem via Räcke decompositions. In: Proc. 51st IEEE Symposium on Foundations of Computer Science, FOCS (2010)

    Google Scholar 

  2. Andrews, M., Zhang, L.: Hardness of the undirected edge-disjoint paths problem. In: Proc. 37th ACM Symposium on Theory of Computing (STOC), pp. 276–283 (2005)

    Google Scholar 

  3. Andrews, M., Chuzhoy, J., Khanna, S., Zhang, L.: Hardness of the undirected edge-disjoint paths problem with congestion. In: Proc. 46th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 226–244 (2005)

    Google Scholar 

  4. Bollobás, B., Thomason, A.: Highly linked graphs. Combinatorica 16, 313–320 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chekuri, C., Khanna, S., Shepherd, B.: The all-or-nothing multicommodity flow problem. In: Proc. 36th ACM Symposium on Theory of Computing (STOC), pp. 156–165 (2004)

    Google Scholar 

  6. Chekuri, C., Khanna, S., Shepherd, B.: Multicommodity flow, well-linked terminals, and routing problems. In: Proc. 37th ACM Symposium on Theory of Computing (STOC), pp. 183–192 (2005)

    Google Scholar 

  7. Chekuri, C., Khanna, S., Shepherd, B.: An \(O(\sqrt{n})\) approximation and integrality gap for disjoint paths and unsplittable flow. Theory of Computing 2, 137–146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5, 691–703 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frank, A.: Packing paths, cuts and circuits – a survey. In: Korte, B., Lovász, L., Promel, H.J., Schrijver, A. (eds.) Paths, Flows and VLSI-Layout, pp. 49–100. Springer, Berlin (1990)

    Google Scholar 

  10. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximaiton algorithms for edge-disjoint paths and related problems. J. Comp. Syst. Science 67, 473–496 (2003); Also Proc. 31st ACM Symposium on Theory of Computing (STOC), pp. 19–28 (1999)

    Google Scholar 

  11. Jung, H.A.: Verallgemeinerung des n-Fachen Zusammenhangs fuer Graphen. Math. Ann. 187, 95–103 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawarabayashi, K., Reed, B.: A nearly linear time algorithm for the half integral disjoint paths packing. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 446–454 (2008)

    Google Scholar 

  13. Kawarabayashi, K., Kobayashi, Y.: Improved algorithm for the half-disjoint paths problem. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 287–297. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Kawarabayashi, K., Kobayashi, Y.: An O(logn)-approximation algorithm for the disjoint paths problem in Eulerian planar graphs and 4-edge-connected planar graphs. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 274–286. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Kawarabayashi, K., Wollan, P.: A shorter proof of the Graph Minor Algorithm – The Unique Linkage Theorem. In: Proceeding of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 687–694 (2010)

    Google Scholar 

  16. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time (submitted), http://research.nii.ac.jp/~k_keniti/quaddp1.pdf

  17. Kawarabayashi, K., Kobayashi, Y.: The edge disjoint paths problem in eulerian graphs and 4-edge-connected graphs. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 345–353 (2010)

    Google Scholar 

  18. Kawarabayashi, K., Kobayashi, Y.: Breaking the \(O(\sqrt{n})\)-approximation algorithm for the disjoint paths problem (preprint)

    Google Scholar 

  19. Kleinberg, J.: Decision algorithms for unsplittable flow and the half-disjoint paths problem. In: Proc. 30th ACM Symposium on Theory of Computing (STOC), pp. 530–539 (1998)

    Google Scholar 

  20. Kleinberg, J.: An approximation algorithm for the disjoint paths problem in even-degree planar graphs. In: Proc. 46th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 627–636 (2005)

    Google Scholar 

  21. Kleinberg, J., Tardos, É.: Disjoint paths in densely embedded graphs. In: Proc. 36th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 52–61 (1995)

    Google Scholar 

  22. Kleinberg, J., Tardos, É.: Approximations for the disjoint paths problem in high-diameter planar networks. In: Proc. 27th ACM Symposium on Theory of Computing (STOC), pp. 26–35 (1995)

    Google Scholar 

  23. Kolliopoulos, S., Stein, C.: Improved approximation algorithms for unsplittable flow problems. In: Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 426–435 (1997)

    Google Scholar 

  24. Kramer, M.R., van Leeuwen, J.: The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2, 129–146 (1984)

    Google Scholar 

  25. Larman, D.G., Mani, P.: On the Existence of Certain Configurations Within Graphs and the 1-Skeletons of Polytopes. Proc. London Math. Soc. 20, 144–160 (1974)

    MathSciNet  MATH  Google Scholar 

  26. Raghavan, P., Thompson, C.D.: Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rao, S., Zhou, S.: Edge disjoint paths in moderately connected graphs. SIAM J. Computing 39, 1856–1887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reed, B.: Tree width and tangles: a new connectivity measure and some applications. In: Surveys in Combinatorics. London Math. Soc. Lecture Note Ser., vol. 241, pp. 87–162. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  29. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B 63, 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B 89, 43–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithm and Combinatorics, vol. 24. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  32. Srinviasan, A.: Improved approximations for edge-disjoint paths, unsplittable flow, and related routing problems. In: Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 416–425 (1997)

    Google Scholar 

  33. Thomas, R., Wollan, P.: An improved linear edge bound for graph linkages. European J. Combin. 26, 309–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thomassen, C.: 2-linked graph. European Journal of Combin. 1, 371–378 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawarabayashi, Ki. (2011). The Disjoint Paths Problem: Algorithm and Structure. In: Katoh, N., Kumar, A. (eds) WALCOM: Algorithms and Computation. WALCOM 2011. Lecture Notes in Computer Science, vol 6552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19094-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19094-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19093-3

  • Online ISBN: 978-3-642-19094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics