Skip to main content

EGG Molecules Couple the Oocyte-to-Embryo Transition with Cell Cycle Progression

  • Chapter
  • First Online:
Cell Cycle in Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

The oocyte-to-embryo transition is a precisely coordinated process in which an oocyte becomes fertilized and transitions to an embryonic program of events. The molecules involved in this process have not been well studied. Recently, a group of interacting molecules in C. elegans have been described as coordinating the oocyte-to-embryo transition with the advancement of the cell cycle. Genes egg-3, egg-4, and egg-5 represent a small class of regulatory molecules known as protein–tyrosine phosphase-like proteins, which can bind phosphorylated substrates and act as scaffolding molecules or inhibitors. These genes are responsible for coupling the movements and activities of regulatory kinase mbk-2 with advancement of the cell cycle during the oocyte-to-embryo transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51:589–599

    Article  CAS  PubMed  Google Scholar 

  • Bellec Y, Harrar Y, Butaeye C, Darnet S, Bellini C, Faure JD (2002) Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis. Plant J 32:713–722

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  Google Scholar 

  • Burrows AE, Sceurman BK, Kosinski ME, Richie CT, Sadler PL, Schumacher JM, Golden A (2006) The C. elegans Myt1 ortholog is required for the proper timing of oocyte maturation. Development 133:697–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Cheng KC, Klancer R, Singson A, Seydoux G (2009) Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 139:560–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coghlan A, Stajich JE, Harris TW (2006) Comparative genomics in C. elegans, C. briggsae, and other Caenorhabditis species. Methods Mol Biol 351:13–29

    CAS  PubMed  Google Scholar 

  • Da Costa M, Bach L, Landrieu I, Bellec Y, Catrice O, Brown S, De Veylder L, Lippens G, InzĂ© D, Faure JD (2006) Arabidopsis PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A. Plant Cell 18:1426–1437

    Article  PubMed Central  PubMed  Google Scholar 

  • Detwiler MR, Reuben M, Li X, Rogers E, Lin R (2001) Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 1:187–199

    Article  CAS  PubMed  Google Scholar 

  • Ducibella T, Fissore R (2008) The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 315:257–279

    Article  CAS  PubMed  Google Scholar 

  • Evsikov AV, Marin de Evsikova C (2009) Gene expression during the oocyte-to-embryo transition in mammals. Mol Reprod Dev 76:805–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fire A (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Gonczy P, Rose LS (2005) Asymmetric cell division and axis formation in the embryo. WormBook: 1–20

    Google Scholar 

  • Govindan JA, Greenstein D (2007) Embryogenesis: anchors away! Curr Biol 17:R890–R892

    Article  CAS  PubMed  Google Scholar 

  • Granger L, Martin E, Segalat L (2004) Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 32:e117

    Article  PubMed Central  PubMed  Google Scholar 

  • Greenstein D (2005) Control of oocyte meiotic maturation and fertilization. WormBook: 1–12

    Google Scholar 

  • Hadwiger G, Dour S, Arur S, Fox P, Nonet ML (2010) A monoclonal antibody toolkit for C. elegans. PLoS One 5:e10161

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris JE, Govindan JA, Yamamoto I, Schwartz J, Kaverina I, Greenstein D (2006) Major sperm protein signaling promotes oocyte microtubule reorganization prior to fertilization in Caenorhabditis elegans. Dev Biol 299:105–121

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock E, Sulston J, Thomson J (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220:1277–1299

    Article  CAS  PubMed  Google Scholar 

  • Hubbard EJ, Greenstein D (2000) The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn 218:2–22

    Article  CAS  PubMed  Google Scholar 

  • Jensen VL, Albert PS, Riddle DL (2007) Caenorhabditis elegans SDF-9 enhances insulin/insulin-like signaling through interaction with DAF-2. Genetics 177:661–666

    Article  CAS  PubMed  Google Scholar 

  • Johnston WL, Krizus A, Dennis JW (2006) The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo. BMC Biol 4:36

    Article  Google Scholar 

  • Kadandale P, Chatterjee I, Singson A (2009) Germline transformation of Caenorhabditis elegans by injection. Methods Mol Biol 518:123–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kadandale P, Stewart-Michaelis A, Gordon S, Rubin J, Klancer R, Schweinsberg P, Grant BD, Singson A (2005) The egg surface LDL receptor repeat-containing proteins EGG-1 and EGG-2 are required for fertilization in Caenorhabditis elegans. Curr Biol 15:2222–2229

    Article  CAS  PubMed  Google Scholar 

  • Kimble J, Crittenden S (2005) Germline proliferation and its control. WormBook: 1–14

    Google Scholar 

  • Klass M, Wolf N, Hirsh D (1976) Development of the male reproductive system and sexual transformation in the nematode Caenorhabditis elegans. Dev Biol 52:1–18

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara PE (2003) The multifaceted C. elegans major sperm protein: an ephrin signaling antagonist in oocyte maturation. Genes Dev 17:155–161

    Article  CAS  PubMed  Google Scholar 

  • L’Hernault SW (2006) Spermatogenesis. WormBook: 1–14

    Google Scholar 

  • LaMunyon CW, Ward S (1994) Assessing the viability of mutant and manipulated sperm by artificial insemination of Caenorhabditis elegans. Genetics 138:689–692

    CAS  PubMed  Google Scholar 

  • Lin R (2003) A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality. Dev Biol 258:226–239

    Article  CAS  PubMed  Google Scholar 

  • Maeda I, Kohara Y, Yamamoto M, Sugimoto A (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11:171–176

    Article  CAS  PubMed  Google Scholar 

  • Maruyama R, Velarde N, Klancer R, Gordon S, Kadandale P, Parry JM, Hang JS, Rubin J, Stewart-Michaelis A, Schweinsberg P, Grant BD, Piano F, Sugimoto A, Singson A (2007) EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr Biol 17:1555–1560

    Article  CAS  PubMed  Google Scholar 

  • McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205:111–128

    Article  CAS  PubMed  Google Scholar 

  • McNally KL, McNally FJ (2005) Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol 282:218–230

    Article  CAS  PubMed  Google Scholar 

  • Nishi Y, Lin R (2005) DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev Biol 288:139–149

    Article  CAS  PubMed  Google Scholar 

  • Nishi Y, Rogers E, Robertson SM, Lin R (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135:687–697

    Article  CAS  PubMed  Google Scholar 

  • Oegema K, Hyman AA (2006) Cell division. WormBook: 1–40

    Google Scholar 

  • Parry JM, Velarde N, Lefkovith AJ, Zegarek MH, Hang JS, Ohm J, Klancer R, Maruyama R, Druzhinina MK, Grant BD, Piano F, Singson A (2009) EGG-4 and EGG-5 link events of the oocyte-to-embryo transition with meiotic progression in C. elegans. Curr Biol 19:1752–1757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pellettieri J, Reinke V, Kim SK, Seydoux G (2003) Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev Cell 5:451–462

    Article  CAS  PubMed  Google Scholar 

  • Praitis V (2006) Creation of transgenic lines using microparticle bombardment methods. Methods Mol Biol 351:93–107

    CAS  PubMed  Google Scholar 

  • Putiri E, Zannoni S, Kadandale P, Singson A (2004) Functional domains and temperature-sensitive mutations in SPE-9, an EGF repeat-containing protein required for fertility in Caenorhabditis elegans. Dev Biol 272:448–459

    Article  CAS  PubMed  Google Scholar 

  • Quintin S, Mains P, Zinke A, Hyman AA (2003) The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo. EMBO Rep 4:1175–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raich WB, Moorman C, Lacefield CO, Lehrer J, Bartsch D, Plasterk RH, Kandel ER, Hobert O (2003) Characterization of Caenorhabditis elegans homologs of the Down syndrome candidate gene DYRK1A. Genetics 163:571–580

    CAS  PubMed  Google Scholar 

  • Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD (2006) Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol Biol Cell 17:3085–3094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR (2000) MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5:671–682

    Article  CAS  PubMed  Google Scholar 

  • Singson A, Hang J, Parry JM (2008) Genes required for the common miracle of fertilization. Int J Dev Biol 52:647–656

    Article  CAS  PubMed  Google Scholar 

  • Singson A, Mercer KB, L’Hernault SW (1998) The C. elegans spe-9 gene encodes a sperm transmembrane protein that contains EGF-like repeats and is required for fertilization. Cell 93:71–79

    Article  CAS  PubMed  Google Scholar 

  • Stitzel ML, Cheng K, Seydoux G (2007) Regulation of MBK-2/Dyrk kinase by dynamic cortical anchoring during the oocyte-to-zygote transition. Curr Biol 17:1545–1554

    Article  CAS  PubMed  Google Scholar 

  • Sulston J, Horvitz H (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110–156

    Article  CAS  PubMed  Google Scholar 

  • Sundaram M (2006) RTK/Ras/MAPK signaling. WormBook: 1–19

    Google Scholar 

  • Tonks N (2009) Pseudophosphatases: grab and hold on. Cell 139:464–465

    Article  CAS  PubMed  Google Scholar 

  • Uwanogho DA, Hardcastle Z, Balogh P, Mirza G, Thornburg KL, Ragoussis J, Sharpe PT (1999) Molecular cloning, chromosomal mapping, and developmental expression of a novel protein tyrosine phosphatase-like gene. Genomics 62:406–416

    Article  CAS  PubMed  Google Scholar 

  • Ward S, Carrel JS (1979) Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev Biol 73:304–321

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto I, Kosinski ME, Greenstein D (2006) Start me up: cell signaling and the journey from oocyte to embryo in C. elegans. Dev Dyn 235:571–585

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, McNally K, McNally FJ (2003) MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C elegans. Dev Biol 260:245–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 285:330–339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the Singson Lab for input and discussion. Work in the Singson Lab has been supported by funds from the Waksman Institute and a grant from the United States National Institutes of Health (R01 HD054681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Singson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parry, J.M., Singson, A. (2011). EGG Molecules Couple the Oocyte-to-Embryo Transition with Cell Cycle Progression. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_7

Download citation

Publish with us

Policies and ethics