Skip to main content

The Spindle Assembly Checkpoint: Clock or Domino?

  • Chapter
  • First Online:
Cell Cycle in Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

In each cell division, the newly duplicated chromosomes must be evenly distributed between the sister cells. Errors in this process during meiosis or mitosis are equally fatal: improper segregation of the chromosome 21 during human meiosis leads to Down syndrome (Conley, Aneuploidy: etiology and mechanisms, pp 35–89, 1985), whereas in somatic cells, aneuploidy has been linked to carcinogenesis, by unbalancing the ratio of oncogenes and tumor suppressors (Holland and Cleveland, Nat Rev Mol Cell Biol 10(7):478–487, 2009; Yuen et al., Curr Opin Cell Biol 17(6):576–582, 2005). Eukaryotic cells have developed a mechanism, known as the spindle assembly checkpoint, to detect erroneous attachment of chromosomes to the mitotic/meiotic spindle and delay the cell cycle to give enough time to resolve these defects. Research in the last 20 years, has demonstrated that the spindle assembly checkpoint is not only a pure checkpoint pathway, but plays a constitutive role in every cell cycle. Here, we review our current knowledge of how the spindle assembly checkpoint is integrated into the cell cycle machinery, and discuss some of the questions that have to be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker D (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36(7):744–749

    CAS  PubMed  Google Scholar 

  • Barisic M, Sohm B, Mikolcevic P, Wandke C, Rauch V, Ringer T, Hess M, Bonn G, Geley S (2010) Spindly/CCDC99 is required for efficient chromosome congression and mitotic checkpoint regulation. Mol Biol Cell 21:1968–1981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernard P, Maure JF, Javerzat JP (2001) Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nat Cell Biol 3(5):522–526

    CAS  PubMed  Google Scholar 

  • Buffin E, Emre D, Karess RE (2007) Flies without a spindle checkpoint. Nat Cell Biol 9(5):565–572

    CAS  PubMed  Google Scholar 

  • Burds AA, Lutum AS, Sorger PK (2005) Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci USA 102(32):11296–11301

    CAS  PubMed  Google Scholar 

  • Burton JL, Solomon MJ (2007) Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev 21(6):655–667

    CAS  PubMed  Google Scholar 

  • Canman JC, Salmon ED, Fang G (2002) Inducing precocious anaphase in cultured mammalian cells. Cell Motil Cytoskeleton 52:61–65

    PubMed  Google Scholar 

  • Chan YW, Fava LL, Uldschmid A, Schmitz MH, Gerlich DW, Nigg EA, Santamaria A (2009) Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. J Cell Biol 185(5):859–874

    CAS  PubMed  Google Scholar 

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    CAS  PubMed  Google Scholar 

  • Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR 3rd, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18:2255–2268

    CAS  PubMed  Google Scholar 

  • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997

    CAS  PubMed  Google Scholar 

  • Chen RH, Waters JC, Salmon ED, Murray AW (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274(5285):242–246

    CAS  PubMed  Google Scholar 

  • Chen RH, Shevchenko A, Mann M, Murray AW (1998) Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol 143:283–295

    CAS  PubMed  Google Scholar 

  • Cheslock P, Kemp BJ, Boumil RM, Ds D (2005) The roles of MAD1, MAD2 and MAD3 in meiotic progression and the segregation of nonexchange chromosomes. Nat Genet 37(7):662–663

    Google Scholar 

  • Ciliberto A, Shah JV (2009) A quantitative systems view of the spindle assembly checkpoint. EMBO J 28(15):2162–2173

    CAS  PubMed  Google Scholar 

  • Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153(3):517–527

    CAS  PubMed  Google Scholar 

  • Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1(2):82–87

    CAS  PubMed  Google Scholar 

  • Conley RW (1985) Down syndrome: economic burdens and benefits of prevention. In: Dellarco VL, Voytek PE, Hollaender A (eds) Aneuploidy: etiology and mechanisms. Plenum, New York, pp 35–59

    Google Scholar 

  • De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V, Nezi L, Mapelli M, Sironi L, Faretta M, Salmon ED, Musacchio A (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15(3):214–225

    PubMed  Google Scholar 

  • den Elzen N, Pines J (2001) Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153:121–136

    Google Scholar 

  • Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK (2000) Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101(6):635–645

    CAS  PubMed  Google Scholar 

  • Elowe S, Dulla K, Uldschmid A, Li X, Dou Z, Nigg EA (2010) Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci 123(Pt 1):84–94

    CAS  PubMed  Google Scholar 

  • Essex A, Dammermann A, Lewellyn L, Oegema K, Desai A (2009) Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches. Mol Biol Cell 20(4):1252–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13:755–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12:1871–1883

    CAS  PubMed  Google Scholar 

  • Fraschini R, Beretta A, Sironi L, Musacchio A, Lucchini G, Piatti S (2001) Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J 20(23):6648–6659

    CAS  PubMed  Google Scholar 

  • Gassmann R, Essex A, Hu JS, Maddox PS, Motegi F, Sugimoto A, O'Rourke SM, Bowerman B, McLeod I, Yates JR III, Oegema K, Cheeseman IM, Desai A (2008) A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev 22(17):2385–2399

    CAS  PubMed  Google Scholar 

  • Gassmann R, Holland AJ, Varma D, Wan X, Civril F, Cleveland DW, Oegema K, Salmon ED, Desai A (2010) Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev 24(9):957–971

    CAS  PubMed  Google Scholar 

  • Geley S, Kramer E, Gieffers C, Gannon J, Peters JM, Hunt T (2001) Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol 153(1):137–148

    CAS  PubMed  Google Scholar 

  • Gillett ES, Espelin CW, Sorger PK (2004) Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J Cell Biol 164(4):535–546

    CAS  PubMed  Google Scholar 

  • Gorbsky GJ, Chen RH, Murray AW (1998) Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J Cell Biol 141:1193–1205

    CAS  PubMed  Google Scholar 

  • Griffis ER, Stuurman N, Vale RD (2007) Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J Cell Biol 177(6):1005–1015

    CAS  PubMed  Google Scholar 

  • Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4(6):799–812

    CAS  PubMed  Google Scholar 

  • Habu T, Kim SH, Weinstein J, Matsumoto T (2002) Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J 21(23):6419–6428

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–634

    CAS  PubMed  Google Scholar 

  • Hoffman DB, Pearson CG, Yen TJ, Howell BJ, Salmon ED (2001) Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol Biol Cell 12(7):1995–2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10(7):478–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Homer H, Gui L, Carroll J (2009) A spindle assembly checkpoint protein functions in prophase I rrest and prometaphase progression. Science 326:991–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 150:1233–1250

    CAS  PubMed  Google Scholar 

  • Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM, Rieder CL, Salmon ED (2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 155(7):1159–1172

    CAS  PubMed  Google Scholar 

  • Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    CAS  PubMed  Google Scholar 

  • Jelluma N, Brenkman AB, van den Broek NJ, Cruijsen CW, van Osch MH, Lens SM, Medema RH, Kops GJ (2008) Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 132(2):233–246

    CAS  PubMed  Google Scholar 

  • Johnson VL, Scott MI, Holt SV, Hussein D, Taylor SS (2004) Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117(Pt 8):1577–1589

    CAS  PubMed  Google Scholar 

  • Karess R (2005) Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 15(7):386–392

    CAS  PubMed  Google Scholar 

  • Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327(5962):172–177

    CAS  PubMed  Google Scholar 

  • Kitagawa R (2009) Key players in chromosome segregation in Caenorhabditis elegans. Front Biosci 14:1529–1557

    CAS  Google Scholar 

  • Kitagawa R, Rose AM (1999) Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1(8):514–521

    CAS  PubMed  Google Scholar 

  • Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427(6974):510–517

    CAS  PubMed  Google Scholar 

  • Kiyomitsu T, Obuse C, Yanagida M (2007) Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell 13(5):663–676

    CAS  PubMed  Google Scholar 

  • Klebig C, Korinth D, Meraldi P (2009) Bub1 regulates chromosome segregation in a kinetochore-independent manner. J Cell Biol 185(5):841–858

    CAS  PubMed  Google Scholar 

  • Kops GJ (2009) Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochem Soc Trans 37(Pt 5):971–975

    CAS  PubMed  Google Scholar 

  • Kops GJ, Saurin AT, Meraldi P (2010) Finding the middle ground: how kinetochores power chromosome congression. Cell Mol Life Sci 67(13):2145–2161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kulukian A, Han JS, Cleveland DW (2009) Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell 16(1):105–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lampson MA, Kapoor TM (2005) The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol 7(1):93–98

    CAS  PubMed  Google Scholar 

  • Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66(3):519–531

    CAS  PubMed  Google Scholar 

  • Li X, Nicklas RB (1995) Mitotic forces control a cell-cycle checkpoint. Nature 373:630–632

    CAS  PubMed  Google Scholar 

  • Liu D, Lampson MA (2009) Regulation of kinetochore-microtubule attachments by Aurora B kinase. Biochem Soc Trans 37(Pt 5):976–980

    CAS  PubMed  Google Scholar 

  • Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM (2009) Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323(5919):1350–1353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo X, Fang G, Coldiron M, Lin Y, Yu H, Kirschner MW, Wagner G (2000) Structure of the mad2 spindle assembly checkpoint protein and its interaction with cdc20. Nat Struct Biol 7:224–229

    CAS  PubMed  Google Scholar 

  • Malmanche N, Owen S, Gegick S, Steffensen S, Tomkiel JE, Sunkel CE (2007) Drosophila BubR1 is essential for meiotic sister-chromatid cohesion and maintenance of synaptonemal complex. Curr Biol 17(17):1489–1497

    CAS  PubMed  Google Scholar 

  • Malureanu LA, Jeganathan KB, Hamada M, Wasilewski L, Davenport J, van Deursen JM (2009) BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev Cell 16(1):118–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mapelli M, Filipp FV, Rancati G, Massimiliano L, Nezi L, Stier G, Hagan RS, Confalonieri S, Piatti S, Sattler M, Musacchio A (2006) Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J 25(6):1273–1284

    CAS  PubMed  Google Scholar 

  • Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK (2003) Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4(6):813–826

    CAS  PubMed  Google Scholar 

  • Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97(5):621–633

    CAS  PubMed  Google Scholar 

  • Martin-Lluesma S, Stucke VM, Nigg EA (2002) Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297(5590):2267–2270

    CAS  PubMed  Google Scholar 

  • Maure JF, Kitamura E, Tanaka TU (2007) Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr Biol 17(24):2175–2182

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGuinness BE, Anger M, Kouznetsova A, Gil-Bernabe AM, Helmhart W, Kudo NR, Wuensche A, Taylor S, Hoog C, Novak B, Nasmyth K (2009) Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr Biol 19(5):369–380

    CAS  PubMed  Google Scholar 

  • Meraldi P, Sorger PK (2005) A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J 24(8):1621–1633

    CAS  PubMed  Google Scholar 

  • Meraldi P, Draviam VM, Sorger PK (2004) Timing and checkpoints in the regulation of mitotic progression. Dev Cell 7(1):45–60

    CAS  PubMed  Google Scholar 

  • Mills KD, Sinclair DA, Guarente L (1999) MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97(5):609–620

    CAS  PubMed  Google Scholar 

  • Minshull J, Sun H, Tonks NK, Murray AW (1994) A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79:475–486

    CAS  PubMed  Google Scholar 

  • Murray AW, Kirschner MW (1989) Dominoes and clocks: the union of two views of the cell cycle. Science 246(4930):614–621

    CAS  PubMed  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    CAS  PubMed  Google Scholar 

  • Nezi L, Musacchio A (2009) Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol 21(6):785–795

    CAS  PubMed  Google Scholar 

  • Nilsson J, Yekezare M, Minshull J, Pines J (2008) The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 10(12):1411–1420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palframan WJ, Meehl JB, Jaspersen SL, Winey M, Murray AW (2006) Anaphase inactivation of the spindle checkpoint. Science 313(5787):680–684

    CAS  PubMed  Google Scholar 

  • Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7(9):644–656

    CAS  PubMed  Google Scholar 

  • Pinsky BA, Nelson CR, Biggins S (2009) Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol 19(14):1182–1187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahmani Z, Gagou ME, Lefebvre C, Emre D, Karess RE (2009) Separating the spindle, checkpoint, and timer functions of BubR1. J Cell Biol 187(5):597–605

    CAS  PubMed  Google Scholar 

  • Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK (2001a) Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105(5):645–655

    CAS  PubMed  Google Scholar 

  • Reimann JD, Gardner BE, Margottin-Goguet F, Jackson PK (2001b) Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev 15(24):3278–3285

    CAS  PubMed  Google Scholar 

  • Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130(4):941–948

    CAS  PubMed  Google Scholar 

  • Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G (1997) Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci USA 94(10):5107–5112

    CAS  PubMed  Google Scholar 

  • Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297(5581):547–551

    CAS  PubMed  Google Scholar 

  • Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28(17):2511–2531

    CAS  PubMed  Google Scholar 

  • Shannon KB, Canman JC, Salmon ED (2002) Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. Mol Biol Cell 13:3706–3719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shonn MA, McCarroll R, Murray AW (2000) Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast mitosis. Science 289:300–303

    CAS  PubMed  Google Scholar 

  • Sironi L, Mapelli M, Knapp S, Antoni AD, Jeang KT, Musacchio A (2002) Crystal structure of the tetrameric Mad1- Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J 21:2496–2506

    CAS  PubMed  Google Scholar 

  • Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154(5):925–936

    CAS  PubMed  Google Scholar 

  • Tang Z, Bharadwaj R, Li B, Yu H (2001) Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1:227–237

    CAS  PubMed  Google Scholar 

  • Tavormina PA, Burke DJ (1998) Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 148(4):1701–1713

    CAS  PubMed  Google Scholar 

  • Taylor S, McKeon F (1997) Kinetochore localization of murine Bub1 is required for normal mitotic timing an checkpoint response to spindle damage. Cell 89:727–735

    CAS  PubMed  Google Scholar 

  • Tighe A, Staples O, Taylor S (2008) Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. J Cell Biol 181(6):893–901

    CAS  PubMed  Google Scholar 

  • Vanoosthuyse V, Hardwick KG (2009) A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol 19(14):1176–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warren CD, Brady DM, Johnston RC, Hanna JS, Hardwick KG, Spencer FA (2002) Distinct chromosome segregation roles for spindle checkpoint proteins. Mol Biol Cell 13(9):3029–3041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132:111–123

    CAS  PubMed  Google Scholar 

  • Welburn JP, Vleugel M, Liu D, Yates JR III, Lampson MA, Fukagawa T, Cheeseman IM (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 38(3):383–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westermann S, Drubin DG, Barnes G (2007) Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76:563–591

    CAS  PubMed  Google Scholar 

  • Windecker H, Langegger M, Heinrich S, Hauf S (2009) Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin. EMBO Rep 10(9):1022–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia G, Luo X, Habu T, Rizo J, Matsumoto T, Yu H (2004) Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J 23(15):3133–3143

    CAS  PubMed  Google Scholar 

  • Yamaguchi S, Decottignies A, Nurse P (2003) Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint. EMBO J 22(5):1075–1087

    CAS  PubMed  Google Scholar 

  • Yamamoto TG, Watanabe S, Essex A, Kitagawa R (2008) SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans. J Cell Biol 183(2):187–194

    CAS  PubMed  Google Scholar 

  • Yuen KW, Montpetit B, Hieter P (2005) The kinetochore and cancer: what’s the connection? Curr Opin Cell Biol 17(6):576–582

    CAS  PubMed  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the Meraldi laboratory members for the helpful discussions. MDMR is supported by an Oncosuisse grant, PM is supported by a Förderungs-professorship or the Swiss National Research Fund, a EURYI-award by the European Research Council and the ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María de Medina-Redondo or Patrick Meraldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Medina-Redondo, M., Meraldi, P. (2011). The Spindle Assembly Checkpoint: Clock or Domino?. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_4

Download citation

Publish with us

Policies and ethics