Skip to main content

Cell Cycle Regulation During Proliferation and Differentiation of Mammalian Muscle Precursor Cells

  • Chapter
  • First Online:
Cell Cycle in Development

Abstract

Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.

All authors contributed equally to the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    International Bureau of Weights and Measures, located in Sèvres (France), kept the measurement standards of the International System of Units (SI): the standard kilogram, atomic clocks, and other metrological devices. The phase “Sèvres standard” can be used to emphasize that the described phenomena can be considered as a typical ones.

References

  • Adams PD (2001) Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim Biophys Acta 1471:M123–M133

    CAS  PubMed  Google Scholar 

  • Adiga SK, Toyoshima M, Shimura T, Takeda J, Uematsu N, Niwa O (2007a) Delayed and stage specific phosphorylation of H2ax during preimplantation development of gamma-irradiated mouse embryos. Reproduction 133:415–422

    CAS  PubMed  Google Scholar 

  • Adiga SK, Toyoshima M, Shiraishi K, Shimura T, Takeda J, Taga M, Nagai H, Kumar P, Niwa O (2007b) p21 provides stage specific DNA damage control to preimplantation embryos. Oncogene 26:6141–6149

    CAS  PubMed  Google Scholar 

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin d1 promoter through distinguishable regions. J Biol Chem 270:23589–23597

    CAS  PubMed  Google Scholar 

  • Aleem E, Berthet C, Kaldis P (2004) Cdk2 as a master of s phase entry: fact or fake? Cell Cycle 3:35–37

    CAS  PubMed  Google Scholar 

  • Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165:307–312

    CAS  PubMed  Google Scholar 

  • Alter J, Rozentzweig D, Bengal E (2008) Inhibition of myoblast differentiation by tumor necrosis factor alpha is mediated by c-jun n-terminal kinase 1 and leukemia inhibitory factor. J Biol Chem 283:23224–23234

    CAS  PubMed  Google Scholar 

  • Alway SE, Martyn JK, Ouyang J, Chaudhrai A, Murlasits ZS (2003) Id2 expression during apoptosis and satellite cell activation in unloaded and loaded quail skeletal muscles. Am J Physiol Regul Integr Comp Physiol 284:R540–R549

    CAS  PubMed  Google Scholar 

  • Amthor H, Christ B, Patel K (1999) A molecular mechanism enabling continuous embryonic muscle growth – a balance between proliferation and differentiation. Development 126:1041–1053

    CAS  PubMed  Google Scholar 

  • Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio P, Amati P (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive met kinase activation on myogenic differentiation. J Cell Biol 137:1057–1068

    CAS  PubMed  Google Scholar 

  • Arata Y, Fujita M, Ohtani K, Kijima S, Kato JY (2000) Cdk2-dependent and -independent pathways in E2F-mediated s phase induction. J Biol Chem 275:6337–6345

    CAS  PubMed  Google Scholar 

  • Armand AS, Pariset C, Laziz I, Launay T, Fiore F, Della Gaspera B, Birnbaum D, Charbonnier F, Chanoine C (2005) FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. J Cell Physiol 204:297–308

    CAS  PubMed  Google Scholar 

  • Artus J, Cohen-Tannoudji M (2008) Cell cycle regulation during early mouse embryogenesis. Mol Cell Endocrinol 282:78–86

    CAS  PubMed  Google Scholar 

  • Asakura A, Rudnicki MA (2002) Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 30:1339–1345

    PubMed  Google Scholar 

  • Asp P, Acosta-Alvear D, Tsikitis M, van Oevelen C, Dynlacht BD (2009) E2F3b plays an essential role in myogenic differentiation through isoform-specific gene regulation. Genes Dev 23:37–53

    CAS  PubMed  Google Scholar 

  • Austin L, Bower JJ, Bennett TM, Lynch GS, Kapsa R, White JD, Barnard W, Gregorevic P, Byrne E (2000) Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle Nerve 23:1700–1705

    CAS  PubMed  Google Scholar 

  • Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME (2006) A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 20:2450–2464

    CAS  PubMed  Google Scholar 

  • Balakier H, Czolowska R (1977) Cytoplasmic control of nuclear maturation in mouse oocytes. Exp Cell Res 110:466–469

    CAS  PubMed  Google Scholar 

  • Banks GB, Chamberlain JS (2008) The value of mammalian models for Duchenne muscular dystrophy in developing therapeutic strategies. Curr Top Dev Biol 84:431–453

    CAS  PubMed  Google Scholar 

  • Barnard W, Bower J, Brown MA, Murphy M, Austin L (1994) Leukemia inhibitory factor (LIF) infusion stimulates skeletal muscle regeneration after injury: injured muscle expresses LIF mRNA. J Neurol Sci 123:108–113

    CAS  PubMed  Google Scholar 

  • Barr FG (2001) Gene fusions involving Pax and Fox family members in alveolar rhabdomyosarcoma. Oncogene 20:5736–5746

    CAS  PubMed  Google Scholar 

  • Bartkova J, Lukas J, Strauss M, Bartek J (1998) Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene 17:1027–1037

    CAS  PubMed  Google Scholar 

  • Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148

    CAS  PubMed  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    CAS  PubMed  Google Scholar 

  • Bendall AJ, Ding J, Hu G, Shen MM, Abate-Shen C (1999) Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126:4965–4976

    CAS  PubMed  Google Scholar 

  • Benezra R, Davis RL, Lassar A, Tapscott S, Thayer M, Lockshon D, Weintraub H (1990a) Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation. Ann N Y Acad Sci 599:1–11

    CAS  PubMed  Google Scholar 

  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990b) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59

    CAS  PubMed  Google Scholar 

  • Bengal E, Ransone L, Scharfmann R, Dwarki VJ, Tapscott SJ, Weintraub H, Verma IM (1992) Functional antagonism between c-jun and myod proteins: a direct physical association. Cell 68:507–519

    CAS  PubMed  Google Scholar 

  • Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132:689–701

    CAS  PubMed  Google Scholar 

  • Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595

    CAS  PubMed  Google Scholar 

  • Bienvenu F, Gascan H, Coqueret O (2001) Cyclin D1 represses Stat3 activation through a Cdk4-independent mechanism. J Biol Chem 276:16840–16847

    CAS  PubMed  Google Scholar 

  • Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, Frampton GM, Cole MF, Odom DT, Odajima J, Geng Y, Zagozdzon A, Jecrois M, Young RA, Liu XS, Cepko CL, Gygi SP, Sicinski P (2010) Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 463:374–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biggs JR, Zhang Y, Murphy EV (1995) Repression of the Id2 (inhibitor of differentiation) gene promoter during exit from the cell cycle. J Cell Physiol 164:249–258

    CAS  PubMed  Google Scholar 

  • Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730

    CAS  PubMed  Google Scholar 

  • Blais A, Dynlacht BD (2004) Hitting their targets: an emerging picture of E2F and cell cycle control. Curr Opin Genet Dev 14:527–532

    CAS  PubMed  Google Scholar 

  • Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553–569

    CAS  PubMed  Google Scholar 

  • Blais A, van Oevelen CJ, Margueron R, Acosta-Alvear D, Dynlacht BD (2007) Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J Cell Biol 179:1399–1412

    CAS  PubMed  Google Scholar 

  • Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985) Plasticity of the differentiated state. Science 230:758–766

    CAS  PubMed  Google Scholar 

  • Bober E, Franz T, Arnold HH, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120:603–612

    CAS  PubMed  Google Scholar 

  • Boonen KJ, Rosaria-Chak KY, Baaijens FP, van der Schaft DW, Post MJ (2009) Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am J Physiol Cell Physiol 296:C1338–C1345

    CAS  PubMed  Google Scholar 

  • Borycki AG, Li J, Jin F, Emerson CP, Epstein JA (1999) Pax3 functions in cell survival and in Pax7 regulation. Development 126:1665–1674

    CAS  PubMed  Google Scholar 

  • Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59

    CAS  PubMed  Google Scholar 

  • Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 8:701–709

    CAS  PubMed  Google Scholar 

  • Broussard SR, McCusker RH, Novakofski JE, Strle K, Shen WH, Johnson RW, Dantzer R, Kelley KW (2004) Il-1beta impairs insulin-like growth factor I-induced differentiation and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. J Immunol 172:7713–7720

    CAS  PubMed  Google Scholar 

  • Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9:632–646

    CAS  PubMed  Google Scholar 

  • Brzoska E, Grabowska I, Wrobel E, Moraczewski J (2003) Syndecan-4 distribution during the differentiation of satellite cells isolated from soleus muscle treated by phorbol ester and calphostin C. Cell Mol Biol Lett 8:269–278

    CAS  PubMed  Google Scholar 

  • Brzoska E, Przewozniak M, Grabowska I, Janczyk-Ilach K, Moraczewski J (2009) Pax3 and Pax7 expression during myoblast differentiation in vitro and fast and slow muscle regeneration in vivo. Cell Biol Int 33:483–492

    CAS  PubMed  Google Scholar 

  • Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673

    CAS  PubMed  Google Scholar 

  • Butler DC, Haramizu S, Williamson DL, Alway SE (2009) Phospho-ablated Id2 is growth suppressive and pro-apoptotic in proliferating myoblasts. PLoS One 4:e6302

    PubMed Central  PubMed  Google Scholar 

  • Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    CAS  PubMed  Google Scholar 

  • Cannon JG, St Pierre BA (1998) Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem 179:159–167

    CAS  PubMed  Google Scholar 

  • Cantini M, Carraro U (1995) Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture. J Neuropathol Exp Neurol 54:121–128

    CAS  PubMed  Google Scholar 

  • Cantini M, Massimino ML, Rapizzi E, Rossini K, Catani C, Dalla Libera L, Carraro U (1995) Human satellite cell proliferation in vitro is regulated by autocrine secretion of Il-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Commun 216:49–53

    CAS  PubMed  Google Scholar 

  • Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V (2004) The polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18:2627–2638

    CAS  PubMed  Google Scholar 

  • Carnac G, Fajas L, L’Honore A, Sardet C, Lamb NJ, Fernandez A (2000) The retinoblastoma-like protein p130 is involved in the determination of reserve cells in differentiating myoblasts. Curr Biol 10:543–546

    CAS  PubMed  Google Scholar 

  • Carter EJ, Cosgrove RA, Gonzalez I, Eisemann JH, Lovett FA, Cobb LJ, Pell JM (2009) MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. J Cell Sci 122:3104–3112

    CAS  PubMed  Google Scholar 

  • Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F, Felsani A, Caruso M (1999) Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol Cell Biol 19:5203–5217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW (2000) Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway. J Biol Chem 275:35942–35952

    CAS  PubMed  Google Scholar 

  • Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA (2007) Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21:2195–2204

    CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    CAS  PubMed  Google Scholar 

  • Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD (2002) Cp110, a cell cycle-dependent Cdk substrate, regulates centrosome duplication in human cells. Dev Cell 3:339–350

    CAS  PubMed  Google Scholar 

  • Chen SE, Gerken E, Zhang Y, Zhan M, Mohan RK, Li AS, Reid MB, Li YP (2005) Role of TNF-{alpha} signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol Cell Physiol 289:C1179–C1187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen SE, Jin B, Li YP (2007) TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 292:C1660–C1671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21cip1 and p27kip1 cdk “inhibitors” are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18:1571–1583

    CAS  PubMed  Google Scholar 

  • Cheng M, Nguyen MH, Fantuzzi G, Koh TJ (2008) Endogenous interferon-gamma is required for efficient skeletal muscle regeneration. Am J Physiol Cell Physiol 294:C1183–C1191

    CAS  PubMed  Google Scholar 

  • Cheshier SH, Morrison SJ, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96:3120–3125

    CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383:407–413

    CAS  PubMed  Google Scholar 

  • Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA 87:7988–7992

    CAS  PubMed  Google Scholar 

  • Christy BA, Sanders LK, Lau LF, Copeland NG, Jenkins NA, Nathans D (1991) An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci USA 88:1815–1819

    CAS  PubMed  Google Scholar 

  • Ciemerych MA, Sicinski P (2005) Cell cycle in mouse development. Oncogene 24:2877–2898

    CAS  PubMed  Google Scholar 

  • Ciemerych MA, Maro B, Kubiak JZ (1999) Control of duration of the first two mitoses in a mouse embryo. Zygote 7:293–300

    CAS  PubMed  Google Scholar 

  • Ciemerych MA, Yu Q, Szczepanska K, Sicinski P (2008) Cdk4 activity in mouse embryos expressing a single D-type cyclin. Int J Dev Biol 52:299–305

    CAS  PubMed  Google Scholar 

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359:328–330

    CAS  PubMed  Google Scholar 

  • Classon M, Dyson N (2001) p107 and p130: versatile proteins with interesting pockets. Exp Cell Res 264:135–147

    CAS  PubMed  Google Scholar 

  • Cobrinik D (2005) Pocket proteins and cell cycle control. Oncogene 24:2796–2809

    CAS  PubMed  Google Scholar 

  • Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4:e83

    PubMed Central  PubMed  Google Scholar 

  • Collins CA, Gnocchi VF, White RB, Boldrin L, Perez-Ruiz A, Relaix F, Morgan JE, Zammit PS (2009) Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS One 4:e4475

    PubMed Central  PubMed  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    CAS  PubMed  Google Scholar 

  • Conboy MJ, Karasov AO, Rando TA (2007) High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol 5:e102

    PubMed Central  PubMed  Google Scholar 

  • Conklin JF, Sage J (2009) Keeping an eye on retinoblastoma control of human embryonic stem cells. J Cell Biochem 108:1023–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662

    CAS  PubMed  Google Scholar 

  • Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    CAS  PubMed  Google Scholar 

  • Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94

    CAS  PubMed  Google Scholar 

  • Cossins J, Vernon AE, Zhang Y, Philpott A, Jones PH (2002) Hes6 regulates myogenic differentiation. Development 129:2195–2207

    CAS  PubMed  Google Scholar 

  • Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    CAS  PubMed  Google Scholar 

  • Coverley D, Pelizon C, Trewick S, Laskey RA (2000) Chromatin-bound cdc6 persists in S and G2 phases in human cells, while soluble cdc6 is destroyed in a cyclin A-Cdk2 dependent process. J Cell Sci 113(Pt 11):1929–1938

    CAS  PubMed  Google Scholar 

  • Czifra G, Toth IB, Marincsak R, Juhasz I, Kovacs I, Acs P, Kovacs L, Blumberg PM, Biro T (2006) Insulin-like growth factor-I-coupled mitogenic signaling in primary cultured human skeletal muscle cells and in C2C12 myoblasts. A central role of protein kinase cdelta. Cell Signal 18:1461–1472

    CAS  PubMed  Google Scholar 

  • Dahlqvist C, Blokzijl A, Chapman G, Falk A, Dannaeus K, Ibanez CF, Lendahl U (2003) Functional notch signaling is required for Bmp4-induced inhibition of myogenic differentiation. Development 130:6089–6099

    CAS  PubMed  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L, te Riele H (2000) Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14:3051–3064

    CAS  PubMed  Google Scholar 

  • Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340:330–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Bruin A, Wu L, Saavedra HI, Wilson P, Yang Y, Rosol TJ, Weinstein M, Robinson ML, Leone G (2003) Rb function in extraembryonic lineages suppresses apoptosis in the CNS of Rb-deficient mice. Proc Natl Acad Sci USA 100:6546–6551

    PubMed  Google Scholar 

  • De Falco G, Comes F, Simone C (2006) pRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene 25:5244–5249

    PubMed  Google Scholar 

  • de la Serna IL, Roy K, Carlson KA, Imbalzano AN (2001) MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative Swi/Snf chromatin remodeling enzymes. J Biol Chem 276:41486–41491

    PubMed  Google Scholar 

  • de Medina Redondo M, Meraldi P (2011) The spindle assembly checkpoint: clock or domino? In: Kubiak JZ (ed) Cell cycle and development. Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • De Rossi M, Bernasconi P, Baggi F, de Waal MR, Mantegazza R (2000) Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int Immunol 12:1329–1335

    PubMed  Google Scholar 

  • De Santa F, Albini S, Mezzaroma E, Baron L, Felsani A, Caruso M (2007) pRb-dependent cyclin D3 protein stabilization is required for myogenic differentiation. Mol Cell Biol 27:7248–7265

    PubMed Central  PubMed  Google Scholar 

  • Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10:113–120

    CAS  PubMed  Google Scholar 

  • den Elzen N, Pines J (2001) Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153:121–136

    Google Scholar 

  • Dienstman SR, Holtzer H (1977) Skeletal myogenesis. Control of proliferation in a normal cell lineage. Exp Cell Res 107:355–364

    CAS  PubMed  Google Scholar 

  • Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-met in the development of skeletal muscle. Development 126:1621–1629

    CAS  PubMed  Google Scholar 

  • Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24:2810–2826

    CAS  PubMed  Google Scholar 

  • Doonan JH, Kitsios G (2009) Functional evolution of cyclin-dependent kinases. Mol Biotechnol 42:14–29

    CAS  PubMed  Google Scholar 

  • Doumit ME, Cook DR, Merkel RA (1993) Fibroblast growth factor, epidermal growth factor, insulin-like growth factors, and platelet-derived growth factor-bb stimulate proliferation of clonally derived porcine myogenic satellite cells. J Cell Physiol 157:326–332

    CAS  PubMed  Google Scholar 

  • Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE (2001) A dynamic role for HDAC7 in Mef2-mediated muscle differentiation. J Biol Chem 276:17007–17013

    CAS  PubMed  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J, Begemann M, Crabtree GR, Goff SP (1994) The retinoblastoma protein and Brg1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130

    CAS  PubMed  Google Scholar 

  • Duprez D, Fournier-Thibault C, Le Douarin N (1998) Sonic hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125:495–505

    CAS  PubMed  Google Scholar 

  • Eckner R, Yao TP, Oldread E, Livingston DM (1996) Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev 10:2478–2490

    CAS  PubMed  Google Scholar 

  • Edmondson DG, Olson EN (1989) A gene with homology to the myc similarity region of myoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3:628–640

    CAS  PubMed  Google Scholar 

  • Elia D, Madhala D, Ardon E, Reshef R, Halevy O (2007) Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: involvement of MAPK/ERK and PI3K/AKT pathways. Biochim Biophys Acta 1773:1438–1446

    CAS  PubMed  Google Scholar 

  • Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    CAS  PubMed  Google Scholar 

  • Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135:431–440

    CAS  PubMed  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    CAS  PubMed  Google Scholar 

  • Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S (2004) Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(Ink4a). Oncogene 23:491–502

    CAS  PubMed  Google Scholar 

  • Fisher D (2011) Control of DNA replication by cyclin-dependent kinases in development. In: Kubiak JZ (ed) Cell cycle in development. Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1:681–686

    CAS  PubMed  Google Scholar 

  • Flanagan-Steet H, Hannon K, McAvoy MJ, Hullinger R, Olwin BB (2000) Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb. Dev Biol 218:21–37

    CAS  PubMed  Google Scholar 

  • Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11:2040–2051

    CAS  PubMed  Google Scholar 

  • Forcales SV, Puri PL (2005) Signaling to the chromatin during skeletal myogenesis: novel targets for pharmacological modulation of gene expression. Semin Cell Dev Biol 16:596–611

    CAS  PubMed  Google Scholar 

  • Foucrier J, Grand MC, De Conto F, Bassaglia Y, Geraud G, Scherrer K, Martelly I (1999) Dynamic distribution and formation of a para-sarcomeric banding pattern of prosomes during myogenic differentiation of satellite cells in vitro. J Cell Sci 112(Pt 7):989–1001

    CAS  PubMed  Google Scholar 

  • Foudi A, Hochedlinger K, Van Buren D, Schindler JW, Jaenisch R, Carey V, Hock H (2009) Analysis of histone 2b-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 27:84–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franz T, Kothary R (1993) Characterization of the neural crest defect in splotch (sp1h) mutant mice using a lacZ transgene. Brain Res Dev Brain Res 72:99–105

    CAS  PubMed  Google Scholar 

  • Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137:811–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25:2448–2459

    CAS  PubMed  Google Scholar 

  • Furstenthal L, Kaiser BK, Swanson C, Jackson PK (2001a) Cyclin E uses cdc6 as a chromatin-associated receptor required for DNA replication. J Cell Biol 152:1267–1278

    CAS  PubMed  Google Scholar 

  • Furstenthal L, Swanson C, Kaiser BK, Eldridge AG, Jackson PK (2001b) Triggering ubiquitination of a Cdk inhibitor at origins of DNA replication. Nat Cell Biol 3:715–722

    CAS  PubMed  Google Scholar 

  • Furuno N, den Elzen N, Pines J (1999) Human cyclin A is required for mitosis until mid prophase. J Cell Biol 147:295–306

    CAS  PubMed  Google Scholar 

  • Gabrielli BG, Lee MS, Walker DH, Piwnica-Worms H, Maller JL (1992) Cdc25 regulates the phosphorylation and activity of the xenopus Cdk2 protein kinase complex. J Biol Chem 267:18040–18046

    CAS  PubMed  Google Scholar 

  • Gao X, Chandra T, Gratton MO, Quelo I, Prud’homme J, Stifani S, St-Arnaud R (2001) Hes6 acts as a transcriptional repressor in myoblasts and can induce the myogenic differentiation program. J Cell Biol 154:1161–1171

    CAS  PubMed  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P (2001) Deletion of the p27kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci USA 98:194–199

    CAS  PubMed  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114:431–443

    CAS  PubMed  Google Scholar 

  • Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P (2007) Kinase-independent function of cyclin E. Mol Cell 25:127–139

    CAS  PubMed  Google Scholar 

  • Gibson MC, Schultz E (1982) The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 202:329–337

    CAS  PubMed  Google Scholar 

  • Girard F, Strausfeld U, Fernandez A, Lamb NJ (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67:1169–1179

    CAS  PubMed  Google Scholar 

  • Gnocchi VF, White RB, Ono Y, Ellis JA, Zammit PS (2009) Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One 4:e5205

    PubMed Central  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    CAS  PubMed  Google Scholar 

  • Gossett LA, Kelvin DJ, Sternberg EA, Olson EN (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 9:5022–5033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gotoh T, Villa LM, Capelluto DGSF, C.V. (2011) Regulatory pathways coordinating cell cycle progression in early xenopus development. In: Kubiak JZ (ed) Cell cycle in development. Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Goulding M, Lumsden A, Paquette AJ (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120:957–971

    CAS  PubMed  Google Scholar 

  • Grana X, Garriga J, Mayol X (1998) Role of the retinoblastoma protein family, pRb, p107 and p130 in the negative control of cell growth. Oncogene 17:3365–3383

    PubMed  Google Scholar 

  • Gredinger E, Gerber AN, Tamir Y, Tapscott SJ, Bengal E (1998) Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J Biol Chem 273:10436–10444

    CAS  PubMed  Google Scholar 

  • Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    CAS  PubMed  Google Scholar 

  • Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267:99–104

    CAS  PubMed  Google Scholar 

  • Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B (1993) Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72:309–324

    CAS  PubMed  Google Scholar 

  • Guan KL, Jenkins CW, Li Y, O’Keefe CL, Noh S, Wu X, Zariwala M, Matera AG, Xiong Y (1996) Isolation and characterization of p19Ink4d, a p16-related inhibitor specific to Cdk6 and Cdk4. Mol Biol Cell 7:57–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gubbels MJ, White M, Szatanek T (2008) The cell cycle and toxoplasma gondii cell division: tightly knit or loosely stitched? Int J Parasitol 38:1343–1358

    CAS  PubMed  Google Scholar 

  • Guo K, Walsh K (1997) Inhibition of myogenesis by multiple cyclin-Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J Biol Chem 272:791–797

    CAS  PubMed  Google Scholar 

  • Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-kappa b controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haddad F, Adams GR (2004) Inhibition of MAP/ERK kinase prevents IGF-I-induced hypertrophy in rat muscles. J Appl Physiol 96:203–210

    CAS  PubMed  Google Scholar 

  • Halevy O, Cantley LC (2004) Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs Insulin-like growth factor-I in myogenic cells. Exp Cell Res 297:224–234

    CAS  PubMed  Google Scholar 

  • Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018–1021

    CAS  PubMed  Google Scholar 

  • Hannon GJ, Beach D (1994) P15ink4b is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371:257–261

    CAS  PubMed  Google Scholar 

  • Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98:859–869

    CAS  PubMed  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    CAS  PubMed  Google Scholar 

  • Hartwell LH (1991) Twenty-five years of cell cycle genetics. Genetics 129:975–980

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51

    CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  • Hayashi S, Aso H, Watanabe K, Nara H, Rose MT, Ohwada S, Yamaguchi T (2004) Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochem Cell Biol 122:427–434

    CAS  PubMed  Google Scholar 

  • Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/Stat pathway. Biochem J 334(Pt 2):297–314

    CAS  PubMed  Google Scholar 

  • Herreros B, Giannelli F (1967) Spatial distribution of old and new chromatid sub-units and frequency of chromatid exchanges in induced human lymphocyte endoreduplications. Nature 216:286–288

    CAS  PubMed  Google Scholar 

  • Hibi M, Nakajima K, Hirano T (1996) Il-6 cytokine family and signal transduction: a model of the cytokine system. J Mol Med 74:1–12

    CAS  PubMed  Google Scholar 

  • Hindley J, Phear GA (1984) Sequence of the cell division gene Cdc2 from schizosaccharomyces pombe; patterns of splicing and homology to protein kinases. Gene 31:129–134

    CAS  PubMed  Google Scholar 

  • Hoffmann I, Draetta G, Karsenti E (1994) Activation of the phosphatase activity of human Cdc25a by a Cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J 13:p4302–p4310

    Google Scholar 

  • Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) Il-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494

    CAS  PubMed  Google Scholar 

  • Houlard M, Artus J, Cohen-Tannoudji M (2009) Cell cycle checkpoints and DNA damage response in early mouse embryo. In: Kubiak JZ, Ciemerych MA, Richard-Parpaillon L (eds) Cell cycle and development in vertebrates. Research Signpost, Kerala, pp 223–244

    Google Scholar 

  • Hu P, Geles KG, Paik JH, DePinho RA, Tjian R (2008) Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 15:534–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huh MS, Parker MH, Scime A, Parks R, Rudnicki MA (2004) Rb is required for progression through myogenic differentiation but not maintenance of terminal differentiation. J Cell Biol 166:865–876

    CAS  PubMed  Google Scholar 

  • Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka-Reuveni Z, Reyes M (2010) Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS One 5:e10920

    PubMed Central  PubMed  Google Scholar 

  • Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199:326–337

    CAS  PubMed  Google Scholar 

  • Itoh N, Mima T, Mikawa T (1996) Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle. Development 122:291–300

    CAS  PubMed  Google Scholar 

  • Iwamori N, Naito K, Sugiura K, Tojo H (2002) Preimplantation-embryo-specific cell cycle regulation is attributed to the low expression level of retinoblastoma protein. FEBS Lett 526:119–123

    CAS  PubMed  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300

    CAS  PubMed  Google Scholar 

  • Jacquemin V, Furling D, Bigot A, Butler-Browne GS, Mouly V (2004) IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Exp Cell Res 299:148–158

    CAS  PubMed  Google Scholar 

  • Jacquemin V, Butler-Browne GS, Furling D, Mouly V (2007) Il-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. J Cell Sci 120:670–681

    CAS  PubMed  Google Scholar 

  • Janatpour MJ, McMaster MT, Genbacev O, Zhou Y, Dong J, Cross JC, Israel MA, Fisher SJ (2000) Id-2 regulates critical aspects of human cytotrophoblast differentiation, invasion and migration. Development 127:549–558

    CAS  PubMed  Google Scholar 

  • Jarriault S, Le Bail O, Hirsinger E, Pourquie O, Logeat F, Strong CF, Brou C, Seidah NG, Isra l A (1998) Delta-1 activation of Notch-1 signaling results in Hes-1 transactivation. Mol Cell Biol 18:7423–7431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jen Y, Weintraub H, Benezra R (1992) Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of id with E2a proteins. Genes Dev 6:1466–1479

    CAS  PubMed  Google Scholar 

  • Johnson SE, Allen RE (1995) Activation of skeletal muscle satellite cells and the role of fibroblast growth factor receptors. Exp Cell Res 219:449–453

    CAS  PubMed  Google Scholar 

  • Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) Erk1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–115

    CAS  PubMed  Google Scholar 

  • Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB (2005) The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116

    CAS  PubMed  Google Scholar 

  • Jory A, Le Roux I, Gayraud-Morel B, Rocheteau P, Cohen-Tannoudji M, Cumano A, Tajbakhsh S (2009) Numb promotes an increase in skeletal muscle progenitor cells in the embryonic somite. Stem Cells 27:2769–2780

    CAS  PubMed  Google Scholar 

  • Jostes B, Walther C, Gruss P (1990) The murine paired box gene, pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 33:27–37

    CAS  PubMed  Google Scholar 

  • Kablar B, Krastel K, Ying C, Tapscott SJ, Goldhamer DJ, Rudnicki MA (1999) Myogenic determination occurs independently in somites and limb buds. Dev Biol 206:219–231

    CAS  PubMed  Google Scholar 

  • Kaldis P (1999) The Cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci 55:284–296

    CAS  PubMed  Google Scholar 

  • Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (Gdf8) in double-muscled belgian blue and piedmontese cattle. Genome Res 7:910–916

    CAS  PubMed  Google Scholar 

  • Kami K, Senba E (1998) Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle. Muscle Nerve 21:819–822

    CAS  PubMed  Google Scholar 

  • Kardon G, Campbell JK, Tabin CJ (2002) Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell 3:533–545

    CAS  PubMed  Google Scholar 

  • Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431

    CAS  PubMed  Google Scholar 

  • Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R (2002) Identification of a Bmp-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells 7:949–960

    CAS  PubMed  Google Scholar 

  • Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans R Soc Lond B Biol Sci 243:221–240

    Google Scholar 

  • Khan J, Bittner ML, Saal LH, Teichmann U, Azorsa DO, Gooden GC, Pavan WJ, Trent JM, Meltzer PS (1999) cDNA microarrays detect activation of a myogenic transcription program by the Pax3-Fkhr fusion oncogene. Proc Natl Acad Sci USA 96:13264–13269

    CAS  PubMed  Google Scholar 

  • Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiess M, Gill RM, Hamel PA (1995) Expression of the positive regulator of cell cycle progression, cyclin D3, is induced during differentiation of myoblasts into quiescent myotubes. Oncogene 10:159–166

    CAS  PubMed  Google Scholar 

  • Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A (1998) The muscle regulatory factors myod and Myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459

    CAS  PubMed  Google Scholar 

  • Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbe JC, Lamb N, Fernandez A (1999) Cdk1- and Cdk2-mediated phosphorylation of myod Ser200 in growing C2 myoblasts: role in modulating myod half-life and myogenic activity. Mol Cell Biol 19:3167–3176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koleva M, Kappler R, Vogler M, Herwig A, Fulda S, Hahn H (2005) Pleiotropic effects of sonic hedgehog on muscle satellite cells. Cell Mol Life Sci 62:1863–1870

    CAS  PubMed  Google Scholar 

  • Kong Y, Johnson SE, Taparowsky EJ, Konieczny SF (1995) Ras p21val inhibits myogenesis without altering the DNA binding or transcriptional activities of the myogenic basic helix-loop-helix factors. Mol Cell Biol 15:5205–5213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong LJ, Chang JT, Bild AH, Nevins JR (2007) Compensation and specificity of function within the E2F family. Oncogene 26:321–327

    CAS  PubMed  Google Scholar 

  • Korenjak M, Brehm A (2005) E2f-rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev 15:520–527

    CAS  PubMed  Google Scholar 

  • Krude T, Jackman M, Pines J, Laskey RA (1997) Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Cell 88:109–119

    CAS  PubMed  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2:22–31

    CAS  PubMed  Google Scholar 

  • Kubiak JZ, Ciemerych MA, Hupalowska A, Sikora-Polaczek M, Polanski Z (2008) On the transition from the meiotic to mitotic cell cycle during early mouse development. Int J Dev Biol 52:201–217

    PubMed  Google Scholar 

  • Kurek J, Bower J, Romanella M, Austin L (1996) Leukaemia inhibitory factor treatment stimulates muscle regeneration in the mdx mouse. Neurosci Lett 212:167–170

    CAS  PubMed  Google Scholar 

  • Kurisaki T, Masuda A, Sudo K, Sakagami J, Higashiyama S, Matsuda Y, Nagabukuro A, Tsuji A, Nabeshima Y, Asano M, Iwakura Y, Sehara-Fujisawa A (2003) Phenotypic analysis of meltrin alpha (ADAM12)-deficient mice: involvement of meltrin alpha in adipogenesis and myogenesis. Mol Cell Biol 23:55–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuroda K, Tani S, Tamura K, Minoguchi S, Kurooka H, Honjo T (1999) Delta-induced notch signaling mediated by rbp-j inhibits MyoD expression and myogenesis. J Biol Chem 274:7238–7244

    CAS  PubMed  Google Scholar 

  • La Baer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of Cdk inhibitors. Genes Dev 11:847–862

    Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    CAS  PubMed  Google Scholar 

  • Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP (2006) Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res 312:1127–1141

    CAS  PubMed  Google Scholar 

  • Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A (2000) Id2 is a retinoblastoma protein target and mediates signalling by myc oncoproteins. Nature 407:592–598

    CAS  PubMed  Google Scholar 

  • Latham KE (1999) Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 193:71–124

    CAS  PubMed  Google Scholar 

  • Lattanzi L, Salvatori G, Coletta M, Sonnino C, Cusella De Angelis MG, Gioglio L, Murry CE, Kelly R, Ferrari G, Molinaro M, Crescenzi M, Mavilio F, Cossu G (1998) High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated myod gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. J Clin Invest 101:2119–2128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/hogMAPK pathway. J Biol Chem 271:20608–20616

    CAS  PubMed  Google Scholar 

  • Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–547

    PubMed Central  PubMed  Google Scholar 

  • LeCouter JE, Kablar B, Whyte PF, Ying C, Rudnicki MA (1998) Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125:4669–4679

    CAS  PubMed  Google Scholar 

  • Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327:31–35

    CAS  PubMed  Google Scholar 

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294

    CAS  PubMed  Google Scholar 

  • Lee MH, Reynisdottir I, Massague J (1995) Cloning of p57kip2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9:639–649

    CAS  PubMed  Google Scholar 

  • Lee MH, Williams BO, Mulligan G, Mukai S, Bronson RT, Dyson N, Harlow E, Jacks T (1996) Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev 10:1621–1632

    CAS  PubMed  Google Scholar 

  • Lee KY, Ladha MH, McMahon C, Ewen ME (1999) The retinoblastoma protein is linked to the activation of ras. Mol Cell Biol 19:7724–7732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, Dyson N, Helin K (1993) The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol 13:7813–7825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lefaucheur JP, Sebille A (1995) Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J Neuroimmunol 57:85–91

    CAS  PubMed  Google Scholar 

  • Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, Miron A, Nevins JR (2000) Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol 20:3626–3632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leshem Y, Halevy O (2002) Phosphorylation of prb is required for HGF-induced muscle cell proliferation and is p27kip1-dependent. J Cell Physiol 191:173–182

    CAS  PubMed  Google Scholar 

  • Leshem Y, Spicer DB, Gal-Levi R, Halevy O (2000) Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: a role for the bHLH protein twist and the Cdk inhibitor p27. J Cell Physiol 184:101–109

    CAS  PubMed  Google Scholar 

  • Leshem Y, Gitelman I, Ponzetto C, Halevy O (2002) Preferential binding of grb2 or phosphatidylinositol 3-kinase to the met receptor has opposite effects on HGF-induced myoblast proliferation. Exp Cell Res 274:288–298

    CAS  PubMed  Google Scholar 

  • Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodavsky I (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA 93:7069–7074

    CAS  PubMed  Google Scholar 

  • Li YP (2003) TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285:C370–C376

    CAS  PubMed  Google Scholar 

  • Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    CAS  PubMed  Google Scholar 

  • Li L, Chambard JC, Karin M, Olson EN (1992a) Fos and jun repress transcriptional activation by myogenin and MyoD: the amino terminus of jun can mediate repression. Genes Dev 6:676–689

    CAS  PubMed  Google Scholar 

  • Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN (1992b) FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 71:1181–1194

    CAS  PubMed  Google Scholar 

  • Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB (2005) TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/mafbx in skeletal muscle. FASEB J 19:362–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Moylan JS, Chambers MA, Smith J, Reid MB (2009) Interleukin-1 stimulates catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 297:C706–C714

    CAS  PubMed  Google Scholar 

  • Liu S, Spinner DS, Schmidt MM, Danielsson JA, Wang S, Schmidt J (2000) Interaction of MyoD family proteins with enhancers of acetylcholine receptor subunit genes in vivo. J Biol Chem 275:41364–41368

    CAS  PubMed  Google Scholar 

  • Lord KA, Abdollahi A, Thomas SM, DeMarco M, Brugge JS, Hoffman-Liebermann B, Liebermann DA (1991) Leukemia inhibitory factor and interleukin-6 trigger the same immediate early response, including tyrosine phosphorylation, upon induction of myeloid leukemia differentiation. Mol Cell Biol 11:4371–4379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loveys DA, Streiff MB, Kato GJ (1996) E2a basic-helix-loop-helix transcription factors are negatively regulated by serum growth factors and by the Id3 protein. Nucleic Acids Res 24:2813–2820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-Cdk complexes. Mol Cell Biol 18:753–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luttrell LM, van Biesen T, Hawes BE, Koch WJ, Touhara K, Lefkowitz RJ (1995) G beta gamma subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J Biol Chem 270:16495–16498

    CAS  PubMed  Google Scholar 

  • Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD, Wang J, Qin J, Chow LT, Harper JW (2000) Cell cycle-regulated phosphorylation of p220(Npat) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 14:2298–2313

    CAS  PubMed  Google Scholar 

  • Macaluso M, Montanari M, Giordano A (2006) Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 25:5263–5267

    CAS  PubMed  Google Scholar 

  • Machida S, Booth FW (2004) Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 63:337–340

    CAS  PubMed  Google Scholar 

  • Machida S, Spangenburg EE, Booth FW (2003) Forkhead transcription factor Foxo1 transduces insulin-like growth factor’s signal to p27kip1 in primary skeletal muscle satellite cells. J Cell Physiol 196:523–531

    CAS  PubMed  Google Scholar 

  • Magenta A, Cenciarelli C, De Santa F, Fuschi P, Martelli F, Caruso M, Felsani A (2003) MyoD stimulates Rb promoter activity via the Creb/p300 nuclear transduction pathway. Mol Cell Biol 23:2893–2906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mal A, Harter ML (2003) MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc Natl Acad Sci USA 100:1735–1739

    CAS  PubMed  Google Scholar 

  • Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML (2001) A role for histone deacetylase HDAC1 in modulating the transcriptional activity of myod: inhibition of the myogenic program. EMBO J 20:1739–1753

    CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641

    CAS  PubMed  Google Scholar 

  • Mariappan I, Parnaik VK (2005) Sequestration of pRb by cyclin D3 causes intranuclear reorganization of lamin A/C during muscle cell differentiation. Mol Biol Cell 16:1948–1960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maroto M, Reshef R, Munsterberg AE, Koester S, Goulding M, Lassar AB (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89:139–148

    CAS  PubMed  Google Scholar 

  • Martelli F, Cenciarelli C, Santarelli G, Polikar B, Felsani A, Caruso M (1994) MyoD induces retinoblastoma gene expression during myogenic differentiation. Oncogene 9:3579–3590

    CAS  PubMed  Google Scholar 

  • Martin JF, Li L, Olson EN (1992) Repression of myogenin function by TGF-beta 1 is targeted at the basic helix-loop-helix motif and is independent of E2a products. J Biol Chem 267:10956–10960

    CAS  PubMed  Google Scholar 

  • Massague J, Cheifetz S, Endo T, Nadal-Ginard B (1986) Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci USA 83:8206–8210

    CAS  PubMed  Google Scholar 

  • Masui Y (2001) From oocyte maturation to the in vitro cell cycle: the history of discoveries of maturation-promoting factor (MPF) and cytostatic factor (CSF). Differentiation 69:1–17

    CAS  PubMed  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145

    CAS  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone DG, Bremer EG (2001) Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 276:49299–49309

    CAS  PubMed  Google Scholar 

  • McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147

    CAS  PubMed  Google Scholar 

  • McFarland DC, Pesall JE (2008) Phospho-MAPK as a marker of myogenic satellite cell responsiveness to growth factors. Comp Biochem Physiol B Biochem Mol Biol 149:463–467

    PubMed  Google Scholar 

  • McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248:125–130

    CAS  PubMed  Google Scholar 

  • McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11:497–504

    CAS  PubMed  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    CAS  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    CAS  PubMed  Google Scholar 

  • Melnikova IN, Christy BA (1996) Muscle cell differentiation is inhibited by the helix-loop-helix protein Id3. Cell Growth Differ 7:1067–1079

    CAS  PubMed  Google Scholar 

  • Melnikova IN, Bounpheng M, Schatteman GC, Gilliam D, Christy BA (1999) Differential biological activities of mammalian id proteins in muscle cells. Exp Cell Res 247:94–104

    CAS  PubMed  Google Scholar 

  • Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278:C174–C181

    CAS  PubMed  Google Scholar 

  • Miner JH, Wold B (1990) Herculin, a fourth member of the myod family of myogenic regulatory genes. Proc Natl Acad Sci USA 87:1089–1093

    CAS  PubMed  Google Scholar 

  • Minshull J, Golsteyn R, Hill CS, Hunt T (1990) The A- and B-type cyclin associated Cdc2 kinases in xenopus turn on and off at different times in the cell cycle. EMBO J 9:2865–2875

    CAS  PubMed  Google Scholar 

  • Mishina Y, Suzuki A, Ueno N, Behringer RR (1995) Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9:3027–3037

    CAS  PubMed  Google Scholar 

  • Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene expression by Mef2 and myogenic bHLH proteins. Cell 83:1125–1136

    CAS  PubMed  Google Scholar 

  • Momčilović O, Navara C, Schatten G (2011) Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. In: Kubiak JZ (ed) Cell cycle in development. Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Moon NS, Dyson N (2008) E2f7 and E2F8 keep the E2F family in balance. Dev Cell 14:1–3

    CAS  PubMed  Google Scholar 

  • Moraczewski J, Archacka K, Brzoska E, Ciemerych MA, Grabowska I, Janczyk-Ilach K, Streminska W, Zimowska M (2008) From planarians to mammals – the many faces of regeneration. Int J Dev Biol 52:219–227

    PubMed  Google Scholar 

  • Morgenbesser SD, Williams BO, Jacks T, De Pinho RA (1994) p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371:72–74

    CAS  PubMed  Google Scholar 

  • Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS (1998) Activation of AKT/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinase gamma. J Biol Chem 273:19080–19085

    CAS  PubMed  Google Scholar 

  • Musaro A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATC1. Nature 400:581–585

    CAS  PubMed  Google Scholar 

  • Nakamura T, Teramoto H, Ichihara A (1986) Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci USA 83:6489–6493

    CAS  PubMed  Google Scholar 

  • Nameroff M, Holtzer H (1969) Contact-mediated reversible suppression of myogenesis. Dev Biol 19:380–396

    CAS  PubMed  Google Scholar 

  • Novitch BG, Mulligan GJ, Jacks T, Lassar AB (1996) Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 135:441–456

    CAS  PubMed  Google Scholar 

  • Novitch BG, Spicer DB, Kim PS, Cheung WL, Lassar AB (1999) pRb is required for Mef2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol 9:449–459

    CAS  PubMed  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K (2000) Nucleophosmin/b23 is a target of Cdk2/cyclin E in centrosome duplication. Cell 103:127–140

    CAS  PubMed  Google Scholar 

  • Olson E (1992) Activation of muscle-specific transcription by myogenic helix-loop-helix proteins. Symp Soc Exp Biol 46:331–341

    CAS  PubMed  Google Scholar 

  • Olson EN, Klein WH (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8:1–8

    CAS  PubMed  Google Scholar 

  • Ono Y, Gnocchi VF, Zammit PS, Nagatomi R (2009) Presenilin-1 acts via Id1 to regulate the function of muscle satellite cells in a gamma-secretase-independent manner. J Cell Sci 122:4427–4438

    CAS  PubMed  Google Scholar 

  • Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111:1097–1107

    CAS  PubMed  Google Scholar 

  • Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971

    CAS  PubMed  Google Scholar 

  • Pallafacchina G, Francois S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4:77–91

    CAS  PubMed  Google Scholar 

  • Park GH, Kariya S, Monani UR (2010) Spinal muscular atrophy: new and emerging insights from model mice. Curr Neurol Neurosci Rep 10:108–117

    PubMed Central  PubMed  Google Scholar 

  • Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ (1995) p53-independent expression of p21cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027

    CAS  PubMed  Google Scholar 

  • Parker MH, Seale P, Rudnicki MA (2003) Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4:497–507

    CAS  PubMed  Google Scholar 

  • Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, Baeza-Raja B, Jardi M, Bosch-Comas A, Esteller M, Caelles C, Serrano AL, Wagner EF, Munoz-Canoves P (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 26:1245–1256

    CAS  PubMed  Google Scholar 

  • Petersen BO, Lukas J, Sorensen CS, Bartek J, Helin K (1999) Phosphorylation of mammalian cdc6 by cyclin A/Cdk2 regulates its subcellular localization. EMBO J 18:396–410

    CAS  PubMed  Google Scholar 

  • Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994) p27kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    CAS  PubMed  Google Scholar 

  • Ponzetto C, Pante G, Prunotto C, Ieraci A, Maina F (2000) Met signaling mutants as tools for developmental studies. Int J Dev Biol 44:645–653

    CAS  PubMed  Google Scholar 

  • Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78:219–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prabhu S, Ignatova A, Park ST, Sun XH (1997) Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2a and Id proteins. Mol Cell Biol 17:5888–5896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puri PL, Avantaggiati ML, Balsano C, Sang N, Graessmann A, Giordano A, Levrero M (1997a) p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J 16:369–383

    CAS  PubMed  Google Scholar 

  • Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH, Kedes L, Wang JY, Graessmann A, Nakatani Y, Levrero M (1997b) Differential roles of p300 and pCAF acetyltransferases in muscle differentiation. Mol Cell 1:35–45

    CAS  PubMed  Google Scholar 

  • Puri PL, Iezzi S, Stiegler P, Chen TT, Schiltz RL, Muscat GE, Giordano A, Kedes L, Wang JY, Sartorelli V (2001) Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8:885–897

    CAS  PubMed  Google Scholar 

  • Quelle DE, Ashmun RA, Hannon GJ, Rehberger PA, Trono D, Richter KH, Walker C, Beach D, Sherr CJ, Serrano M (1995) Cloning and characterization of murine p16ink4a and p15ink4b genes. Oncogene 11:635–645

    CAS  PubMed  Google Scholar 

  • Ramocki MB, Johnson SE, White MA, Ashendel CL, Konieczny SF, Taparowsky EJ (1997) Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated ras on skeletal myogenesis. Mol Cell Biol 17:3547–3555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramocki MB, White MA, Konieczny SF, Taparowsky EJ (1998) A role for ralGDS and a novel ras effector in the ras-mediated inhibition of skeletal myogenesis. J Biol Chem 273:17696–17701

    CAS  PubMed  Google Scholar 

  • Rao SS, Kohtz DS (1995) Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor beta. A role for cyclin D1 in control of myoblast differentiation. J Biol Chem 270:4093–4100

    CAS  PubMed  Google Scholar 

  • Rao PN, Wilson B, Puck TT (1977) Premature chromosome condensation and cell cycle analysis. J Cell Physiol 91:131–141

    CAS  PubMed  Google Scholar 

  • Rao SS, Chu C, Kohtz DS (1994) Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol Cell Biol 14:5259–5267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed SA, Ouellette SE, Liu X, Allen RE, Johnson SE (2007) E2F5 and Lek1 translocation to the nucleus is an early event demarcating myoblast quiescence. J Cell Biochem 101:1394–1408

    CAS  PubMed  Google Scholar 

  • Reem GH, Yeh NH (1984) Interleukin 2 regulates expression of its receptor and synthesis of gamma interferon by human T lymphocytes. Science 225:429–430

    CAS  PubMed  Google Scholar 

  • Reimann J, Irintchev A, Wernig A (2000) Regenerative capacity and the number of satellite cells in soleus muscles of normal and mdx mice. Neuromuscul Disord 10:276–282

    CAS  PubMed  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2004) Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev 18:1088–1105

    CAS  PubMed  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    CAS  PubMed  Google Scholar 

  • Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell 1:132–139

    CAS  PubMed  Google Scholar 

  • Ridgeway AG, Skerjanc IS (2001) Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J Biol Chem 276:19033–19039

    CAS  PubMed  Google Scholar 

  • Rios R, Carneiro I, Arce VM, Devesa J (2001) Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun 280:561–566

    CAS  PubMed  Google Scholar 

  • Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31:773–779

    CAS  PubMed  Google Scholar 

  • Rossi CA, Pozzobon M, Ditadi A, Archacka K, Gastaldello A, Sanna M, Franzin C, Malerba A, Milan G, Cananzi M, Schiaffino S, Campanella M, Vettor R, De Coppi P (2010) Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity. PLoS One 5:e8523

    PubMed Central  PubMed  Google Scholar 

  • Rudnicki MA, Braun T, Hinuma S, Jaenisch R (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71:383–390

    CAS  PubMed  Google Scholar 

  • Russell P, Nurse P (1987) The mitotic inducer Nim1+ functions in a regulatory network of protein kinase homologs controlling the initiation of mitosis. Cell 49:569–576

    CAS  PubMed  Google Scholar 

  • Russo S, Tomatis D, Collo G, Tarone G, Tato F (1998) Myogenic conversion of NIH3T3 cells by exogenous MyoD family members: dissociation of terminal differentiation from myotube formation. J Cell Sci 111(Pt 6):691–700

    CAS  PubMed  Google Scholar 

  • Ryder-Cook AS, Sicinski P, Thomas K, Davies KE, Worton RG, Barnard EA, Darlison MG, Barnard PJ (1988) Localization of the mdx mutation within the mouse dystrophin gene. EMBO J 7:3017–3021

    CAS  PubMed  Google Scholar 

  • Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary myod−/− myogenic cells derived from adult skeletal muscle. J Cell Biol 144:631–643

    CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, Theodorou E, Jacks T (2000) Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14:3037–3050

    CAS  PubMed  Google Scholar 

  • Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T (2000) Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 1497:77–88

    CAS  PubMed  Google Scholar 

  • Salisbury E, Sakai K, Schoser B, Huichalaf C, Schneider-Gold C, Nguyen H, Wang GL, Albrecht JH, Timchenko LT (2008) Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1. Exp Cell Res 314:2266–2278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sartorelli V, Caretti G (2005) Mechanisms underlying the transcriptional regulation of skeletal myogenesis. Curr Opin Genet Dev 15:528–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y, Wang JY, Kedes L (1999) Acetylation of myod directed by pCAF is necessary for the execution of the muscle program. Mol Cell 4:725–734

    CAS  PubMed  Google Scholar 

  • Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285:886–891

    CAS  PubMed  Google Scholar 

  • Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and myod1 during mouse embryogenesis. Nature 341:303–307

    CAS  PubMed  Google Scholar 

  • Sato T, Rocancourt D, Marques L, Thorsteinsdottir S, Buckingham M (2010) A Pax3/Dmrt2/Myf5 regulatory cascade functions at the onset of myogenesis. PLoS Genet 6:e1000897

    PubMed Central  PubMed  Google Scholar 

  • Savatier P, Huang S, Szekely L, Wiman KG, Samarut J (1994) Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9:809–818

    CAS  PubMed  Google Scholar 

  • Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12:p309–p322

    Google Scholar 

  • Scata KA, Bernard DW, Fox J, Swain JL (1999) FGF receptor availability regulates skeletal myogenesis. Exp Cell Res 250:10–21

    CAS  PubMed  Google Scholar 

  • Schabort EJ, van der Merwe M, Loos B, Moore FP, Niesler CU (2009) TGF-beta’s delay skeletal muscle progenitor cell differentiation in an isoform-independent manner. Exp Cell Res 315:373–384

    CAS  PubMed  Google Scholar 

  • Schmalbruch H, Hellhammer U (1976) The number of satellite cells in normal human muscle. Anat Rec 185:279–287

    CAS  PubMed  Google Scholar 

  • Schmalbruch H, Hellhammer U (1977) The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec 189:169–175

    CAS  PubMed  Google Scholar 

  • Schneider JW, Gu W, Zhu L, Mahdavi V, Nadal-Ginard B (1994) Reversal of terminal differentiation mediated by p107 in Rb−/− muscle cells. Science 264:1467–1471

    CAS  PubMed  Google Scholar 

  • Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    CAS  PubMed  Google Scholar 

  • Schuster-Gossler K, Cordes R, Gossler A (2007) Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in delta1 mutants. Proc Natl Acad Sci USA 104:537–542

    CAS  PubMed  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    CAS  PubMed  Google Scholar 

  • Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/Cdk4. Nature 366:704–707

    CAS  PubMed  Google Scholar 

  • Shanely RA, Zwetsloot KA, Childs TE, Lees SJ, Tsika RW, Booth FW (2009) IGF-I activates the mouse type IIb myosin heavy chain gene. Am J Physiol Cell Physiol 297:C1019–C1027

    CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2002) p53: good cop/bad cop. Cell 110:9–12

    CAS  PubMed  Google Scholar 

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE (1997) Cyclin E-Cdk2 is a regulator of p27kip1. Genes Dev 11:1464–1478

    CAS  PubMed  Google Scholar 

  • Sheehan SM, Allen RE (1999) Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol 181:499–506

    CAS  PubMed  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18:2699–2711

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Matsushime H, Roussel MF (1992) Regulation of cyl/cyclin D genes by colony-stimulating factor 1. Ciba Found Symp 170:209–219

    CAS  PubMed  Google Scholar 

  • Shi H, Boadu E, Mercan F, Le AM, Roth Flach RJ, Zhang L, Tyner KJ, Olwin BB, Bennett AM (2010) MAP kinase phosphatase-1 deficiency impairs skeletal muscle regeneration and exacerbates muscular dystrophy. FASEB J 24:2985–2997

    CAS  PubMed  Google Scholar 

  • Shin EK, Shin A, Paulding C, Schaffhausen B, Yee AS (1995) Multiple change in E2F function and regulation occur upon muscle differentiation. Mol Cell Biol 15:2252–2262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8:677–687

    CAS  PubMed  Google Scholar 

  • Shinin V, Gayraud-Morel B, Tajbakhsh S (2009) Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells. Methods Mol Biol 482:295–317

    CAS  PubMed  Google Scholar 

  • Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    CAS  PubMed  Google Scholar 

  • Sikora-Polaczek M, Hupalowska A, Polanski Z, Kubiak JZ, Ciemerych MA (2006) The first mitosis of the mouse embryo is prolonged by transitional metaphase arrest. Biol Reprod 74:734–743

    CAS  PubMed  Google Scholar 

  • Simanis V, Nurse P (1986) The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45:261–268

    CAS  PubMed  Google Scholar 

  • Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL (2004) p38 pathway targets Swi-Snf chromatin-remodeling complex to muscle-specific loci. Nat Genet 36:738–743

    CAS  PubMed  Google Scholar 

  • Sironi M, Breviario F, Proserpio P, Biondi A, Vecchi A, Van Damme J, Dejana E, Mantovani A (1989) Il-1 stimulates Il-6 production in endothelial cells. J Immunol 142:549–553

    CAS  PubMed  Google Scholar 

  • Skapek SX, Rhee J, Spicer DB, Lassar AB (1995) Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267:1022–1024

    CAS  PubMed  Google Scholar 

  • Smith LD, Ecker RE (1971) The interaction of steroids with Rana pipiens oocytes in the induction of maturation. Dev Biol 25:232–247

    CAS  PubMed  Google Scholar 

  • Song A, Wang Q, Goebl MG, Harrington MA (1998) Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol 18:4994–4999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 283:C204–C211

    CAS  PubMed  Google Scholar 

  • Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320–8333

    CAS  PubMed  Google Scholar 

  • Straface G, Aprahamian T, Flex A, Gaetani E, Biscetti F, Smith RC, Pecorini G, Pola E, Angelini F, Stigliano E, Castellot JJ Jr, Losordo DW, Pola R (2009) Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med 13:2424–2435

    PubMed Central  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Strober BE, Dunaief JL, Guha GSP (1996) Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRb family of proteins. Mol Cell Biol 16:1576–1583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun XH, Copeland NG, Jenkins NA, Baltimore D (1991) Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 11:5603–5611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun D, Li H, Zolkiewska A (2008) The role of delta-like 1 shedding in muscle cell self-renewal and differentiation. J Cell Sci 121:3815–3823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkara PS, Al-Bader AA, Riker MA, Rao PN (1980) Induction of prematurely condensed chromosomes by mitoplasts. Cell Biol Int Rep 4:1025–1029

    CAS  PubMed  Google Scholar 

  • Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K, Tojo H (2002) Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem Biophys Res Commun 292:709–714

    CAS  PubMed  Google Scholar 

  • Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L (1998) A deletion in the myostatin gene causes the compact (cmpt) hypermuscular mutation in mice. Mamm Genome 9:671–672

    CAS  PubMed  Google Scholar 

  • Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59

    CAS  PubMed  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    CAS  PubMed  Google Scholar 

  • Takahashi C, Bronson RT, Socolovsky M, Contreras B, Lee KY, Jacks T, Noda M, Kucherlapati R, Ewen ME (2003) Rb and N-ras function together to control differentiation in the mouse. Mol Cell Biol 23:5256–5268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka Y, Yamaguchi A, Fujikawa T, Sakuma K, Morita I, Ishii K (2008) Expression of mRNA for specific fibroblast growth factors associates with that of the myogenic markers myod and proliferating cell nuclear antigen in regenerating and overloaded rat plantaris muscle. Acta Physiol (Oxf) 194:149–159

    CAS  Google Scholar 

  • Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4:217–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tarapore P, Okuda M, Fukasawa K (2002) A mammalian in vitro centriole duplication system: evidence for involvement of Cdk2/cyclin E and nucleophosmin/B23 in centrosome duplication. Cell Cycle 1:75–81

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128

    CAS  PubMed  Google Scholar 

  • Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224:7–16

    PubMed  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    CAS  PubMed  Google Scholar 

  • Tong W, Pollard JW (2001) Genetic evidence for the interactions of cyclin D1 and p27(kip1) in mice. Mol Cell Biol 21:1319–1328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T (1998) Mutation of E2F-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 2:293–304

    CAS  PubMed  Google Scholar 

  • Umeda M, Shimotohno A, Yamaguchi M (2005) Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants. Plant Cell Physiol 46:1437–1442

    CAS  PubMed  Google Scholar 

  • Vainikka S, Joukov V, Wennstrom S, Bergman M, Pelicci PG, Alitalo K (1994) Signal transduction by fibroblast growth factor receptor-4 (FGFR-4). Comparison with FGFR-1. J Biol Chem 269:18320–18326

    CAS  PubMed  Google Scholar 

  • Venuti JM, Morris JH, Vivian JL, Olson EN, Klein WH (1995) Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol 128:563–576

    CAS  PubMed  Google Scholar 

  • Wall NA, Hogan BL (1995) Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mech Dev 53:383–392

    CAS  PubMed  Google Scholar 

  • Walsh K, Perlman H (1997) Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev 7:597–602

    CAS  PubMed  Google Scholar 

  • Wang Y, Blelloch R (2011) Cell cycle regulation by micrornas in stem cells. In: Kubiak JZ (ed) Cell cycle in development. Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Wang J, Helin K, Jin P, Nadal-Ginard B (1995) Inhibition of in vitro myogenic differentiation by cellular transcription factor E2F1. Cell Growth Differ 6:1299–1306

    CAS  PubMed  Google Scholar 

  • Wang H, Noulet F, Edom-Vovard F, Le Grand F, Duprez D (2010) BMP signaling at the tips of skeletal muscles regulates the number of fetal muscle progenitors and satellite cells during development. Dev Cell 18:643–654

    CAS  PubMed  Google Scholar 

  • Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86:5434–5438

    CAS  PubMed  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al (1991) The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    CAS  PubMed  Google Scholar 

  • White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138

    CAS  PubMed  Google Scholar 

  • White RB, Ziman MR (2008) Genome-wide discovery of Pax7 target genes during development. Physiol Genomics 33:41–49

    CAS  PubMed  Google Scholar 

  • White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S (2005) Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 16:2018–2027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitman M (1998) Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev 12:2445–2462

    CAS  PubMed  Google Scholar 

  • Williams BA, Ordahl CP (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120:785–796

    CAS  PubMed  Google Scholar 

  • Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129

    CAS  PubMed  Google Scholar 

  • Winter B, Braun T, Arnold HH (1993) Camp-dependent protein kinase represses myogenic differentiation and the activity of the muscle-specific helix-loop-helix transcription factors Myf-5 and MyoD. J Biol Chem 268:9869–9878

    CAS  PubMed  Google Scholar 

  • Wong JT (1996) Protozoan cell cycle control. Biol Signals 5:301–308

    CAS  PubMed  Google Scholar 

  • Wozniak AC, Anderson JE (2005) Single-fiber isolation and maintenance of satellite cell quiescence. Biochem Cell Biol 83:674–676

    CAS  PubMed  Google Scholar 

  • Wrobel E, Brzoska E, Moraczewski J (2007) M-cadherin and beta-catenin participate in differentiation of rat satellite cells. Eur J Cell Biol 86:99–109

    CAS  PubMed  Google Scholar 

  • Wu J, Lim RW (2005) Regulation of inhibitor of differentiation gene 3 (Id3) expression by Sp2-motif binding factor in myogenic C2C12 cells: downregulation of DNA binding activity following skeletal muscle differentiation. Biochim Biophys Acta 1731:13–22

    CAS  PubMed  Google Scholar 

  • Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL (2000) p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 20:3951–3964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu L, de Bruin A, Saavedra HI, Starovic M, Trimboli A, Yang Y, Opavska J, Wilson P, Thompson JC, Ostrowski MC, Rosol TJ, Woollett LA, Weinstein M, Cross JC, Robinson ML, Leone G (2003) Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421:942–947

    CAS  PubMed  Google Scholar 

  • Wyzykowski JC, Winata TI, Mitin N, Taparowsky EJ, Konieczny SF (2002) Identification of novel myod gene targets in proliferating myogenic stem cells. Mol Cell Biol 22:6199–6208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao J, Jethanandani P, Ziober BL, Kramer RH (2003) Regulation of alpha7 integrin expression during muscle differentiation. J Biol Chem 278:49780–49788

    CAS  PubMed  Google Scholar 

  • Xiong Y, Menninger J, Beach D, Ward DC (1992) Molecular cloning and chromosomal mapping of ccnd genes encoding human D-type cyclins. Genomics 13:575–584

    CAS  PubMed  Google Scholar 

  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–455

    CAS  PubMed  Google Scholar 

  • Yaffe D, Saxel O (1977a) A myogenic cell line with altered serum requirements for differentiation. Differentiation 7:159–166

    CAS  PubMed  Google Scholar 

  • Yaffe D, Saxel O (1977b) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    CAS  PubMed  Google Scholar 

  • Yamada M, Tatsumi R, Yamanouchi K, Hosoyama T, Shiratsuchi S, Sato A, Mizunoya W, Ikeuchi Y, Furuse M, Allen RE (2010) High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo. Am J Physiol Cell Physiol 298:C465–C476

    CAS  PubMed  Google Scholar 

  • Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836

    CAS  PubMed  Google Scholar 

  • Yang W, Zhang Y, Li Y, Wu Z, Zhu D (2007) Myostatin induces cyclin d1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/Akt/Gsk-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem 282:3799–3808

    CAS  PubMed  Google Scholar 

  • Yeoh GC, Holtzer H (1977) The effect of cell density, conditioned medium and cytosine arabinoside on myogenesis in primary and secondary cultures. Exp Cell Res 104:63–78

    CAS  PubMed  Google Scholar 

  • Zabludoff SD, Csete M, Wagner R, Yu X, Wold BJ (1998) p27kip1 is expressed transiently in developing myotomes and enhances myogenesis. Cell Growth Differ 9:1–11

    CAS  PubMed  Google Scholar 

  • Zacksenhaus E, Jiang Z, Chung D, Marth JD, Phillips RA, Gallie BL (1996) Prb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev 10:3051–3064

    CAS  PubMed  Google Scholar 

  • Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    CAS  PubMed  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    CAS  PubMed  Google Scholar 

  • Zarkowska T, Mittnacht S (1997) Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem 272:12738–12746

    CAS  PubMed  Google Scholar 

  • Zhang JM, Wei Q, Zhao X, Paterson BM (1999a) Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of myod with cdk4. EMBO J 18:926–933

    CAS  PubMed  Google Scholar 

  • Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ (1999b) p21(cip1) and p57(kip2) control muscle differentiation at the myogenin step. Genes Dev 13:213–224

    CAS  PubMed  Google Scholar 

  • Zhang CL, McKinsey TA, Olson EN (2002) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22:7302–7312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229:380–392

    CAS  PubMed  Google Scholar 

  • Ziebold U, Reza T, Caron A, Lees JA (2001) E2f3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev 15:386–391

    CAS  PubMed  Google Scholar 

  • Zimowska M, Szczepankowska D, Streminska W, Papy D, Tournaire MC, Gautron J, Barritault D, Moraczewski J, Martelly I (2001) Heparan sulfate mimetics modulate calpain activity during rat soleus muscle regeneration. J Cell Physiol 188:178–187

    CAS  PubMed  Google Scholar 

  • Zimowska M, Duchesnay A, Dragun P, Oberbek A, Moraczewski J, Martelly I (2009) Immunoneutralization of TGFbeta1 improves skeletal muscle regeneration: effects on myoblast differentiation and glycosaminoglycan content. Int J Cell Biol 2009:659372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zou L, Stillman B (2000) Assembly of a complex containing cdc45p, replication protein A, and MCM2p at replication origins controlled by S-phase cyclin-dependent kinases and cdc7p-DBF4p kinase. Mol Cell Biol 20:3086–3096

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The authors regret the omission of any relevant literature, which happened either because of space constraint or oversight. This work was supported by the grants N N301 422438 and N N302 125939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Ciemerych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ciemerych, M.A., Archacka, K., Grabowska, I., Przewoźniak, M. (2011). Cell Cycle Regulation During Proliferation and Differentiation of Mammalian Muscle Precursor Cells. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_20

Download citation

Publish with us

Policies and ethics