Skip to main content

Hydrodynamic Principles

  • Chapter
  • First Online:
  • 4302 Accesses

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

The hydrodynamic principles that deal with the mechanics of fluid flow and the derivations are based on three conservation principles: Mass, momentum and energy. In this chapter, these are initially discussed from the viewpoint of classical hydrodynamics and then with reference to their application in open channel flow. The continuity equation ensures the conservation of mass. The specific force equation is based on the momentum principle and calls for force balance. The specific energy equation is based on the energy principle and calls for energy balance. These important principles related to open channel flow are discussed and applications are explained. The additional features of this chapter are the introduction to the boundary layer theory, flow in a curved channel, hydrodynamic drag and lift on a particle and Stokes law.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Convective acceleration is the acceleration of fluid due to space at a given time, while the local acceleration is the acceleration of fluid due to time at a given spatial location.

  2. 2.

    Alternatively, a downward slope is steep if it exceeds the critical slope S c (that is the slope at which the normal depth of flow is critical depth). Hence, S 0 > S c. Similarly, mild slope can be explained.

  3. 3.

    The mass flux through BC can be obtained as ρ(\( u\hat{i} + w\hat{k}\))·(−d\( \delta\hat{i} \) + d\( x\hat{k} \)) = ρ(−udδ + wdx).

  4. 4.

    Hydraulic jump occurs when there is a rapid change in flow depth resulting from a low stage (supercritical) to a high stage (subcritical) with an abrupt rise in free surface elevation. It is therefore a local phenomenon due to a transition from a supercritical flow to a subcritical flow.

References

  • Bélanger JB (1828) Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes. Carilian-Goeury, Paris

    Google Scholar 

  • Blasius H (1912) Das aehnlichkeitsgesetz bei reibungsvorgangen. Zeitschrift des Vereines Deutscher Ingenieure 56:639–643

    Google Scholar 

  • Blasius H (1913) Das aehnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten. Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens 131:1–41

    Article  Google Scholar 

  • Chaudhry MH (2008) Open-channel flow. Springer, New York

    Book  Google Scholar 

  • Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Company, New York

    Google Scholar 

  • de Saint-Venant B (1871) Theorie du mouvement non permanent des eaux, avec application aux crues de rivieras et a l’introduction des marces dans leur lit. Comptes Rendus de l’Academic des Sciences, vol 73, Paris, pp 147–154, 237–240

    Google Scholar 

  • Dey S (2000) Chebyshev solution as aid in computing GVF by standard step method. J Irrig Drainage Eng 126(4):271–274

    Article  Google Scholar 

  • Jaeger C (1957) Engineering fluid mechanics. Saint Martin’s Press, New York

    Google Scholar 

  • Jansen P, van Bendegom L, van den Berg J, de Vries M, Zanen A (1979) Principles of river engineering. Pitman, London

    Google Scholar 

  • Kikkawa H, Ikeda S, Kitagawa A (1976) Flow and bed topography in curved open channels. J Hydraul Div 102(9):1327–1342

    Google Scholar 

  • Odgaard AJ (1989) River-meander model. I: development. J Hydraul Eng 115(11):1433–1450

    Article  Google Scholar 

  • Prandtl L (1904) Über flüssigkeitsbewegung bei sehr kleiner reibung. Verhandlungen des III. Internationalen Mathematiker Kongress, Heidelberg, pp 484–491

    Google Scholar 

  • Rozovskii IL (1957) Flow of water in bends in open channels. Academy of Sciences of the Ukrainian Soviet Socialist Republic, Kiev

    Google Scholar 

  • Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447–459

    Article  Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    Article  Google Scholar 

  • Saffman PG (1968) Corrigendum, the lift on a small sphere in a slow shear flow. J Fluid Mech 31:624

    Article  Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9:80–85

    Google Scholar 

  • Streeter VL (1948) Fluid dynamics. McGraw-Hill Book Company, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dey, S. (2014). Hydrodynamic Principles. In: Fluvial Hydrodynamics. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19062-9_2

Download citation

Publish with us

Policies and ethics