Skip to main content

Liposome Deformation by Imbalance of pH and Ionic Strength Across the Membrane

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XXIV

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 138))

Abstract

The deformation of giant dioleoylphosphatidylcholine (DOPC) liposomes in solution and the properties of DOPC monolayers were investigated by florescence microscopy and surface pressure-area (π-A) isotherm measurements, respectively. These measurements were taken as functions of pH and ionic strength. When the ionic strength was changed from 0.001 to 0.6 at constant pH of 5.6, the coverage of the DOPC monolayer expanded by 10%, and the liposomes formed small protrusions. When the pH was changed from 5.6 to 3.5 at a constant ionic strength of 0.001, the monolayer coverage shrank by 10 %. During this process the external liposome morphology remained the same, but new, smaller vesicles appeared within the interior of the liposomes. Simultaneously changing the pH and the ionic strength to their final values (3.5 and 0.6, respectively), resulted in an expanded monolayer and produced long, protruded liposomes. Our results suggest that the deformation of liposomes is not only driven by osmotic pressure but also the condensed states in each monolayers composing liposome membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tresset G (2009), PMC Biophysics, 2:3

    Article  Google Scholar 

  2. Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN (1996) Proc Natl Acad Sci. 93:11443

    Article  CAS  Google Scholar 

  3. Simons K (2004) Annu Rev Biophys Biomol Struct 33:269

    Article  CAS  Google Scholar 

  4. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T., Discher DE (2007) Nat Nanotechnol 2:249

    Google Scholar 

  5. Bagatolli LA, Gratton E (1999) Biophys J 77(4):2090

    Article  CAS  Google Scholar 

  6. Baumgart T, Hess ST, Webb WW (2003) Nature 425:821

    Article  CAS  Google Scholar 

  7. Yanagisawa M, Imai M, Taniguchi T (2008) Phys Rev Lett 100:148102

    Article  Google Scholar 

  8. Helfrich, W (1974) Z Naturforsch 29c:182

    Google Scholar 

  9. Boroske E, Elwenspoek M, Helfrich W (1981) Biophys J 34(1):95

    Article  CAS  Google Scholar 

  10. Mui BLS, Cullis PR, Evans EA, Madden TD (1993) Biophys J 64:443

    Article  CAS  Google Scholar 

  11. Seifert U, Berndl K, Lipowsky R (1991) Phys Rev A 44(2):1182

    Article  CAS  Google Scholar 

  12. Svetina S (2009) Chem Phys Chem 10:2769

    Article  CAS  Google Scholar 

  13. Rodríguez Niño MR, Lucero A, Rodríguez Patino JM (2008) Colloids Surf A 320:260

    Google Scholar 

  14. Tagami Y, Ikigai H, Oishi Y (2006) Colloids Surf A 284:475.

    Article  Google Scholar 

  15. Seul M, Chen VS, (1993) Phys Rev Lett 70:1658.

    Article  CAS  Google Scholar 

  16. Petty MC (1996) Langmuir-Blodgett Films. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Victor G (1991) Bioelectrochem Bioenerg 25:105.

    Article  Google Scholar 

  18. Vattulainen I, Mouritsen OG (2005) Diffusion in Membranes, Diffusion in Condensed Matter. In: Heitjans P and Kärger J (ed) Methods, Materials, Models, 2nd ed. Springer, Berlin pp 471-509

    Google Scholar 

  19. Another difference of Langmuir monolayer to monolayer in bilayer GUV is that the monolayer contact with the gas phase. The interaction between the terminal end of DOPC and gas phase is weaker than that between the terminal ends of DOPC. This difference, however, should be a negligible contribution because of the tiny contact area at terminal ends of DOPC with which the gas phase contact compared to other area of DOPC.

    Google Scholar 

  20. McIntosh TJ, Vidal A, Simon SA (2003) Biophys J 85:1656

    Article  CAS  Google Scholar 

  21. Evans E, Rawicz W (1990) Phys Rev Lett 64:2094

    Article  CAS  Google Scholar 

  22. Sackmann E (1994) FEBS Lett 346:3

    Article  CAS  Google Scholar 

  23. Bangham AD, Horne RW (1964) J. Mol. Biol. 8:660

    Article  CAS  Google Scholar 

  24. The surface pressure applied at liposome have been estimated about 17-25 mN/m[25, 26]

    Google Scholar 

  25. Rytomaa M, Mustonen P, Kinnunen PKJ (1992) J Biolog Chem 261:22243

    Google Scholar 

  26. Konttila R, Salonen I, Virtanen JA, and Kinnunen PKJ (1988) Biochem 27:7443

    Article  CAS  Google Scholar 

  27. Rinaudo M, François Q, Pépin-Donat B (2009) Macromol Symp 278:67

    Article  CAS  Google Scholar 

  28. Compressibility modulus of Langmuir monolayers can be determined from the slope of the π–A isotherms (Vollhardt D et al. (2006) Adv Colloid Interf Sci 127:83). The compressibility modulus: E0=Γ(dΠ/dΓ)T, where Γ=1/AN, and A, N, and π are molecular area, Avogadro's number, and surface pressure, respectively.

    Google Scholar 

Download references

Acknowledgment

The authors want to thank Dr. Michael Ibele for pointing out mistakes and many valuable discussions of the manuscript. This work was supported by JSPS Research Fellowships for Young Scientists and by Grants-in-Aid for Scientific (No. 21750221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Narita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuroda, O., Seto, H., Narita, T., Yamanaka, M., Oishi, Y. (2011). Liposome Deformation by Imbalance of pH and Ionic Strength Across the Membrane. In: Starov, V., Procházka, K. (eds) Trends in Colloid and Interface Science XXIV. Progress in Colloid and Polymer Science, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19038-4_9

Download citation

Publish with us

Policies and ethics