Skip to main content

Swelling of a Sponge Lipid Phase via Incorporation of a Nonionic Amphiphile: SANS and SAXS Studies

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XXIV

Abstract

Small-angle X-ray scattering (SAXS) is employed to establish the structure of a self-assembled lipid/water system formed in excess aqueous phase by pharmaceutical-grade glycerol monooleate (GMO). A nonionic guest component (octyl glucoside) is incorporated with the purpose to study the swelling of the structure under full hydration. Small-angle neutron scattering (SANS) is used for characterization of the micellar properties of the octyl glucoside amphiphile and glycerol monooleate. The obtained SAXS and SANS patterns indicate a sponge-type supramolecular organization of the investigated lipid material. Their analysis allows determination of the average cell-cell distances in the bicontinuous bilayer sponge that are essential for the encapsulation of biomolecules and drugs. In the presence of the guest octyl glucoside (OG) the average size of the sponge cells is increased by about 14%. This would be an advantageous feature for the application of sponge-type liquid crystalline carriers as protein drug delivery vehicles, nanostructured bioreactors, and peptide-encapsulating fluid nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynch ML, Spicer P.T. (Eds.) (2005) Bicontinuous Liquid Crystals: Surfactant Science Series, Vol.127, Taylor & Francis, Boca Raton.

    Google Scholar 

  2. Seddon JM, Templer RH (1995) in Handbook of Biological Physics (R. Lipowsky and E. Sackmann Eds.), Vol. 1, pp. 97–153, Elsevier Science, London, UK.

    Google Scholar 

  3. Dong Y-D, Dong AW, Larson I, Rappolt M, Amenitsch H, Hanley T, Boyd BJ (2008) Langmuir 24: 6998-7003.

    Article  CAS  Google Scholar 

  4. Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O (2006) Langmuir 22: 9919-9927.

    Article  CAS  Google Scholar 

  5. Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O (2005) Langmuir 21: 569-577.

    Article  CAS  Google Scholar 

  6. Bryskhe K, Schillen K, Olsson U, Yaghmur A, Glatter O (2005) Langmuir 21: 8597-8600.

    Article  CAS  Google Scholar 

  7. Angelova A, Ollivon M, Campitelli A, Bourgaux C (2003) Langmuir 19: 6928-6935.

    Article  CAS  Google Scholar 

  8. Angelov B, Angelova A, Ollivon M, Bourgaux C, Campitelli A (2003) J. Am. Chem. Soc. 125: 7188-7189.

    Article  CAS  Google Scholar 

  9. Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C (2005) J. Drug Delivery Sci. Technol. 15 : 108-112.

    CAS  Google Scholar 

  10. Borné J, Nylander T, Khan A (2002) J. Phys. Chem. B 106: 10492-10500.

    Article  Google Scholar 

  11. Lindblom, G., Larsson, K., Johansson, L., Fontell, K., and Forsén, S. (1979) J. Am. Chem. Soc. 101: 5465-5470.

    Article  CAS  Google Scholar 

  12. Hyde ST, Anderson S, Ericsson B, Larsson K (1984) Z. Kristallogr. 168: 213-219.

    Article  CAS  Google Scholar 

  13. Czeslik C, Winter R, Rapp G, Bartels K (1995), Biophys. J. 68: 1423-1429.

    Article  CAS  Google Scholar 

  14. Qui H, Caffrey M (2000) Biomaterials 21: 223-234.

    Article  Google Scholar 

  15. Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M (2000) Chem Phys Lipids, 107:191-220.

    Article  CAS  Google Scholar 

  16. Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C (2005) Langmuir 21: 4138-4143.

    Article  CAS  Google Scholar 

  17. Angelov B, Angelova A, Papahadjopoulos-Sternberg B, Lesieur S, Sadoc J-F, Ollivon M, Couvreur P (2006) J. Am. Chem. Soc. 128: 5813-5817.

    Article  CAS  Google Scholar 

  18. Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Bourgaux C, Couvreur P (2005) J. Phys. Chem. B 109: 3089-3093.

    Article  CAS  Google Scholar 

  19. Angelov B, Angelova A, Garamus VM, Le Bas G, Lesieur S, Ollivon M, Funari S, Willumeit R, Couvreur (2007) J. Am. Chem. Soc. 129: 13474-13479.

    Google Scholar 

  20. Angelova A, Angelov B, Lesieur S, Mutafchieva R, Ollivon M, Bourgaux C, Willumeit R, Couvreur P (2008) J Drug Delivery Sci Technol 18: 41-45.

    CAS  Google Scholar 

  21. Barauskas J, Johnsson M, Joabsson F, Tiberg F (2005) Langmuir 21: 2569-2577.

    Article  CAS  Google Scholar 

  22. Leser ME, Sagalowicz L, Michel M, Watzke H (2006) Adv. Colloid Interface Sci. 123-126: 125-136.

    Google Scholar 

  23. Cherezov V, Clogston J, Papiz MZ, Caffrey M (2006), J. Mol. Biol. 357: 1605-1618.

    Article  CAS  Google Scholar 

  24. Rosenblatt KM, Douroumis D, Bunjes H (2007) J Pharm Sci. 96: 1564-1675.

    Article  CAS  Google Scholar 

  25. Lee KWY, Nguyen T, Hanley T, Boyd BJ (2009) Int J Pharm. 365: 190–199.

    Article  CAS  Google Scholar 

  26. Chang C, Bodmeier R (1997) J Pharm Sci. 86:747-752.

    Article  CAS  Google Scholar 

  27. Engblom J, Miezis Y, Nylander T, Razumas V, Larsson K (2000) Prog. Coll. Pol. Sci. 116: 9–15.

    Article  CAS  Google Scholar 

  28. Persson, G., Edlund, H., and Lindblom, G. (2003) Eur. J. Biochem. 270: 56-65.

    Article  CAS  Google Scholar 

  29. Barauskas J, Misiunas A, Gunnarsson T, Tiberg F, Johnsson M (2006) Langmuir 22: 6328-6334.

    Article  CAS  Google Scholar 

  30. Angelov B, Angelova A, Vainio U, Garamus VM, Lesieur S, Willumeit R, Couvreur P (2009) Langmuir 25: 3734-3742.

    Article  CAS  Google Scholar 

  31. Porte G (1992) J. Phys. Condens. Matter 4: 8649-8670.

    Article  Google Scholar 

  32. Lei N, Safinya CR, Roux D, Liang KS (1997) Phys. Rev. E 56: 608–613.

    CAS  Google Scholar 

  33. Engström S, Alfons K, Rasmusson M, Ljusberg-Wahren H (1998) Prog. Coll. Pol. Sci. 108: 93–98.

    Article  Google Scholar 

  34. Ridell A, Ekelund K, Evertsson H, Engström S (2003) Colloids Surfaces A 228: 17–23.

    Article  CAS  Google Scholar 

  35. Imberg A, Evertsson H, Stilbs P, Kriechbaum M, Engström S (2003) J. Phys. Chem. B 107: 2311–2318.

    Article  CAS  Google Scholar 

  36. Evertsson H, Stilbs P, Lindblom G, Engström S (2002) Colloids Surfaces B 26: 21–29.

    Article  CAS  Google Scholar 

  37. Gomati R, Bouguerra N, Gharbi A (2001) Physica B 299: 101–107.

    Article  CAS  Google Scholar 

  38. Svergun DI (1992) J. Appl. Cryst. 25: 495-503.

    Article  Google Scholar 

  39. Dozier DW, Huang JS, Fetters LJ (1991) Macromolecules 24: 2810-2814.

    Article  CAS  Google Scholar 

  40. Giordano R, Maisano G, Teixeira J (1997) J. Appl Cryst. 30: 761-764.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This paper is dedicated to the memory of Dr. Michel OLLIVON, a Research Director at CNRS. The research project has been supported by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures. Contract n°: RII3-CT-2003-505925 (EU user's access programme NMI3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Angelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angelova, A. et al. (2011). Swelling of a Sponge Lipid Phase via Incorporation of a Nonionic Amphiphile: SANS and SAXS Studies. In: Starov, V., Procházka, K. (eds) Trends in Colloid and Interface Science XXIV. Progress in Colloid and Polymer Science, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19038-4_1

Download citation

Publish with us

Policies and ethics