Skip to main content

Assay-Assisted Treatment Selection for Women with Breast or Ovarian Cancer

  • Conference paper
Chemosensitivity Testing in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 161))

Abstract

Although women suffering from advanced cancer of the breast or ovary are unlikely to be cured, several active agents are available that can prolong their lives. The use of these agents is based on demonstrated benefit in large randomized clinical trials, and the clinical activity of these chemotherapy regimens is initially high, with 60%–70% of patients responding. Unfortunately, their benefit in the second-line setting is often limited, with less than 30% of patients showing significant disease response. Thus some 70% of patients may undergo ineffective treatment during the course of their disease, while still suffering from significant chemotherapy-related toxicity. Having some foreknowledge of a given agent’s expected result before its administration would therefore benefit the individual patient. In vitro drug response testing, first developed to assist in the selection of antibiotics for patients with bacterial infections, has recently been demonstrated to accurately predict how cancer patients will respond to chemotherapy. This review discusses the historical development of in vitro testing for cancer patients, some of the pitfalls encountered, and offers an assessment of their current utility. Results of various clinical trials that evaluated correlations between in vitro tumor response and clinical outcomes are described. These data suggest that in vitro drug response assays can accurately predict drug resistance and can identify patients who are more or less likely to benefit from a given agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts DS, Salmon SE, Chen HS, Surwit EA, Soehnlen B, Young L, Moon TE (1980) In-vitro clonogenic assay for predicting response of ovarian cancer to chemotherapy. Lancet 2:340–342

    Article  PubMed  CAS  Google Scholar 

  • Alberts DS (1999) Treatment of refractory and recurrent ovarian cancer. Semin Oncol 26 [Suppl 1]:8–14

    PubMed  CAS  Google Scholar 

  • Andreotti PE, Cree IA, Kurbacher CM, Hartman DM, Linder D, Harel G, Gleiberman I, Caruso PA, Ricks SH, Untch M, Sartori C, Bruckner HW (1995) Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: Clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res 55:5276–5282

    PubMed  CAS  Google Scholar 

  • Bird MC, Godwin VA, Antrobus JH, Bosanquet AG (1987) Comparison of in vitro drug sensitivity by the differential staining cytotoxicity (DiSC) and colony-forming assays. Br J Cancer 55:429–431

    Article  PubMed  CAS  Google Scholar 

  • Black MM, Spear FD (1953) Effects of cancer chemotherapeutic agents on dehydrogenase activity of human cancer tissue in vitro. Am J Clin Pathol 23:218–227

    PubMed  CAS  Google Scholar 

  • Black MM, Spear FD (1954) Further observations on the effects of cancer chemotherapeutic agents on the in vitro dehydrogenase activity of cancer tissue. J Natl Cancer Inst 14:1147–1158

    PubMed  CAS  Google Scholar 

  • Bosanquet AG (1991) Correlations between therapeutic response of leukaemias and in-vitro drug-sensitivity assay. Lancet 337:711–714

    Article  PubMed  CAS  Google Scholar 

  • Bosanquet AG, Johnson SA, Richards SM (1999) Prognosis for fludarabine therapy of chronic lymphocytic leukaemia based on ex vivo drug response by DiSC assay. Br J Haematol 106:71–77

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1967) Bacterial growth rate in the sea: direct analysis by thymidine autoradiography. Science 155:81–83

    Article  PubMed  CAS  Google Scholar 

  • Burger A (1988) Drugs and people: medications, their history and origins, and the way they act. University of Virginia Press

    Google Scholar 

  • Campling BJ, Pym J, Baker HM, Cole SPC, Lam YM (1991) Chemosensitivity testing of small cell lung cancer using the MTTassay. Br J Cancer 63:75–83

    Article  PubMed  CAS  Google Scholar 

  • Chen QR, Zhang L, Gasper W, Mixson AJ (2001) Targeting tumor angiogenesis with gene therapy. Mol Genet Metab 74:120–127

    Article  PubMed  CAS  Google Scholar 

  • Chu E, DeVita VT (2001) Principles of cancer management: chemotherapy. In: DeVita VT, Hellman S, Rosenberg S (eds) Cancer: principles and practice of oncology, 6th edn. Lippincott Williams and Wilkins, Philadelphia, chap 17

    Google Scholar 

  • Clark GM, Von Hoff DD (1984) Quality control of a multicenter human tumor cloning system: the Southwest Oncology Group experience. In Salmon S, Trent JM (eds) Human tumor cloning. Grune and Straton, Orlando, pp 255–265

    Google Scholar 

  • Cortazar P, Johnson BE (1999) Review of the efficacy of individualized chemotherapy selected by in vitro drug sensitivity testing for patients with cancer. J Clin Oncol 17:1625–1631

    PubMed  CAS  Google Scholar 

  • Cree IA, Kurbacher CM, Untch M, Sutherland LA, Hunter EM, Subedi AM, James EA, Dewar JA, Preece PE, Andreotti PE, Bruckner HW (1996) Correlation of the clinical response to chemotherapy in breast cancer with ex vivo chemosensitivity. Anticancer Drugs 7:630–635

    Article  PubMed  CAS  Google Scholar 

  • Elledge RM, Clark GM, Hon J, Thant M, Belt R, Maguire YP, Brown J, Bartels P, Von Hoff DD (1995) Rapid in vitro assay for predicting response to fluorouracil in patients with metastatic breast cancer. J Clin Oncol 13:419–423

    PubMed  CAS  Google Scholar 

  • Esteva FJ, Valero V, Pusztai L, Boehnke-Michaud L, Buzdar AU, Hortobagyi GN (2001) Chemotherapy of metastatic breast cancer: what to expect in 2001 and beyond. Oncologist 6:133–146

    Article  PubMed  CAS  Google Scholar 

  • Fruehauf JP, Myers CE, Sinha BK (1990) Synergistic activity of suramin with tumor necrosis factor and doxorubicin on prostate cancer cell lines. J Natl Cancer Inst 82:1206–1209

    Article  PubMed  CAS  Google Scholar 

  • Fruehauf JP, Bosanquet AG (1993) In vitro determinations of drug response: a discussion of clinical applications. Principles Practice Oncol Updates 7:1–16

    Google Scholar 

  • Furukawa T, Kubota T, Hoffman RM (2000) Clinical applications of the histoculture drug response assay. Clin Cancer Res 1:305–311

    Google Scholar 

  • Goldie JH, Coldman AJ (1979) A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63:1727–1733

    PubMed  CAS  Google Scholar 

  • Graham CH, Kobayashi H, Stankiewicz KS, Man S, Kapitain SJ, Kerbel RS (1994) Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J Natl Cancer Inst 86:975–982

    Article  PubMed  CAS  Google Scholar 

  • Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. Ca Cancer J Clin 151:15–36

    Article  Google Scholar 

  • Grever MR, Schepartz SA, Chabner BA (1992) The National Cancer Institute: cancer drug discovery and development program. Semin Oncol 19:622–638

    PubMed  CAS  Google Scholar 

  • Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463

    Article  PubMed  CAS  Google Scholar 

  • Holloway RW, Mehta RS, Finkler N, Parker RJ, Fruehauf JP (2001) Association between in vitro platinum resistance in the extreme drug resistance assay and clinical outcomes for ovarian cancer patients. Gynecol Oncol 80: Abstract #23

    Google Scholar 

  • Houston SJ, Plunkett TA, Barnes DM, Smith P, Rubens RD, Miles DW (1999) Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer. Br J Cancer 79:1220–1226

    Article  PubMed  CAS  Google Scholar 

  • Iyer L, Ratain MJ (1998) Pharmacogenetics and cancer chemotherapy. Eur J Cancer 34:1493–1499

    Article  PubMed  CAS  Google Scholar 

  • Johnson GE, Glaubiger DL (1983) Correlation of cellular tritiated thymidine incorporation with soft agar clonogenicity in chemosensitivity testing of human neuroblastoma cells. Cancer Treat Rep 67:163–168

    PubMed  CAS  Google Scholar 

  • Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, Taylor A, Xie HG, McKinsey J, Zhou S, Lan LB, Schuetz JD, Schuetz EG, Wilkinson GR (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199

    Article  PubMed  CAS  Google Scholar 

  • Kitaoka A, Muraoka R, Tanigawa N (1997) Improvement of in vitro chemosensitivity assay for human solid tumors by application of a preculture using collagen matrix. Clin Cancer Res 3:295–299

    PubMed  CAS  Google Scholar 

  • Kochli OR, Sevin BU, Averette HE, Haller U (1994) Overview of currently used chemosensitivity test systems in gynecologic malignancies and breast cancer. Contrib Gynecol Obstet 19:12–23

    PubMed  CAS  Google Scholar 

  • Konecny G, Crohns C, Pegram M, Felber M, Lude S, Kurbacher C, Cree IA, Hepp H, Untch M (2000) Correlation of drug response with the ATP tumor chemosensitivity assay in primary FIGO stage III ovarian cancer. Gynecol Oncol 77:258–263

    Article  PubMed  CAS  Google Scholar 

  • Kurbacher CM, Stier U, Janát M-M, Cree IA, Bruckner HW (2001) ATP-assay-directed chemotherapy for recurrent ovarian cancer: mature results of an ISCO clinical study group trial. Proc Am Soc Clin Oncol 20: Abstract 2486

    Google Scholar 

  • Leone LA, Meitner PA, Myers TJ, Grace WR, Gajewski WH, Fingert HJ, Rotman B (1991) Predictive value of the fluorescent cytoprint assay (FCA): a retrospective correlation study of in vitro chemosensitivity and individual responses to chemotherapy. Cancer Invest 9:491–503

    Article  PubMed  CAS  Google Scholar 

  • Markman M, Bookman MA (2000) Second-line treatment of ovarian cancer. Oncologist 5:26–35

    Article  PubMed  CAS  Google Scholar 

  • Mason JM, Drummond MF, Bosanquet AG, Sheldon TA (1999) The DiSC assay. A cost-effective guide to treatment for chronic lymphocytic leukemia? Int J Technol Assess Health Care 15:173–84

    Article  PubMed  CAS  Google Scholar 

  • McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, Clarke-Pearson DL, Davidson M (1996) Cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Eng J Med 334:1–6

    Article  CAS  Google Scholar 

  • Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ, Fruehauf JP (1998) Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 4:389–398

    PubMed  CAS  Google Scholar 

  • Mehta RS, Bornstein R, Yu I-R, Parker RJ, McClaren CE, Nguyen KP, Fruehauf JP (2001) Breast cancer survival and in vitro tumor response in the extreme drug resistance assay. Breast Cancer Res Treat 66:225–237

    Article  PubMed  CAS  Google Scholar 

  • Meitner PA (1991) The fluorescent cytoprint assay: a new approach to in vitro chemosensitivity testing. Oncology (Huntingt) 5:75–81

    CAS  Google Scholar 

  • Norton L (1999) Adjuvant breast cancer therapy: current status and future strategies-growth kinetics and the improved drug therapy of breast cancer. Semin Oncol 26 (1 Suppl 3):1–4

    PubMed  CAS  Google Scholar 

  • Ohie S, Udagawa Y, Kozu A, Komuro Y, Aoki D, Nozawa S, Moossa AR, Hoffman RM (2000) Cisplatin sensitivity of ovarian cancer in the histoculture drug response assay correlates to clinical response to combination chemotherapy with cisplatin, doxorubicin and cyclophosphamide. Anticancer Res 20:2049–54

    PubMed  CAS  Google Scholar 

  • Orr JW, Orr P, Kern DH (1999) Cost-effective treatment of women with advanced ovarian cancer by cytoreductive surgery and chemotherapy directed by an in vitro assay for drug resistance. Cancer J Sci Am 5:174–178

    PubMed  Google Scholar 

  • Pasteur L, Joubert J (1877) Charbonne et septicemie. CR Acad Sci 85:101–115

    Google Scholar 

  • Puck TT, Marcus PI (1955) A rapid method for viable titration and clone production with Hela cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc Natl Acad Sci USA 41:432–437

    Article  PubMed  CAS  Google Scholar 

  • Roses AD (2001) Pharmacogenetics. Mol Genet 10:2261–2267

    CAS  Google Scholar 

  • Rotman B, Teplitz C, Dickinson K, Cozzolino JP (1988) Individual human tumors in short-term micro-organ cultures: chemosensitivity testing by fluorescent cytoprinting. In Vitro Cell Dev Biol 24:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Salmon SE, Hamburger AW, Soehnlen B, Durie BGM, Alberts DS, Moon TE (1978) Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. New Engl J Med 298:1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Selby P, Buick RN, Tannock I (1983) A critical appraisal of the “human tumor stem cell assay.” New Engl J Med 308:129–134

    Article  PubMed  CAS  Google Scholar 

  • Sevin BU, Perras JP (1997) Tumor heterogeneity and in vitro chemosensitivity testing in ovarian cancer. Am J Obstet Gynecol 176:759–766

    Article  PubMed  CAS  Google Scholar 

  • Sledge GW Jr (2001) All therapy is targeted therapy: the future of systemic therapy. Clin Breast Cancer 2:94–98

    Article  PubMed  Google Scholar 

  • Sondak VK, Bertelsen CA, Tanigawa N, Hildebrand-Zanki SU, Morton DL, Korn EL, Kern DH (1984) Clinical correlations with chemosensitivities measured in a rapid thymidine incorporation assay. Cancer Res 44:1725–1728

    PubMed  CAS  Google Scholar 

  • Weisenthal LM, Lippman ME (1985) Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat Rep 69:615–632

    PubMed  CAS  Google Scholar 

  • Weisenthal LM (1991) Predictive assays for drug and radiation resistance. In: Masters JRW (ed) Human cancer in primary culture: a handbook. Kluwer, Amsterdam, pp 103–147

    Chapter  Google Scholar 

  • Weisenthal LM (1994) Clinical correlations for cell culture assays based on the concept of total tumor cell kill. Contrib Gynecol Obstet 19:82–90

    PubMed  CAS  Google Scholar 

  • Wilbur DW, Camacho ES, Hilliard DA, Dill PL, Weisenthal LM (1992) Chemotherapy of nonsmall cell lung carcinoma guided by an in vitro drug resistance assay measuring total tumour cell kill. Br J Cancer 65:27–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fruehauf, J.P., Alberts, D.S. (2003). Assay-Assisted Treatment Selection for Women with Breast or Ovarian Cancer. In: Reinhold, U., Tilgen, W. (eds) Chemosensitivity Testing in Oncology. Recent Results in Cancer Research, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19022-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19022-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62412-4

  • Online ISBN: 978-3-642-19022-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics