Black-Box Preconditioning for Mixed Formulation of Self-Adjoint Elliptic PDEs

  • Catherine Powell
  • David Silvester
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 35)


Mixed finite element approximation of self-adjoint elliptic PDEs leads to symmetric indefinite linear systems of equations. Preconditioning strategies commonly focus on reduced symmetric positive definite systems and require nested iteration. This deficiency is avoided if preconditioned MINRES is applied to the full indefinite system. We outline such a preconditioning strategy, the key building block for which is a fast solver for a scalar diffusion operator based on black-box algebraic multigrid. Numerical results are presented for the Stokes equations arising in incompressible flow modelling and a variable diffusion equation that arises in modelling potential flow. We prove that the eigenvalues of the preconditioned matrices are contained in intervals that are bounded independently of the discretisation parameter and the PDE coefficients.


Mixed Finite Element Mixed Finite Element Method Diagonal Scaling Precondition Strategy Mixed Finite Element Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning inH(div)and applications, Math. Comp., 66, 219, (1997) 957–984.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bramble, J.H.: Multigrid Methods. Pitman Research Notes in Mathematics Series, 294, Longman (1993).Google Scholar
  3. Bramble, J.H., Pasciak, J.E.: Iterative techniques for time-dependent Stokes problems. Comput. Math. Appl. 33 (1997) 13–30.MathSciNetzbMATHGoogle Scholar
  4. Brezzi, F., Bathe, K.J.: A discourse on the stability conditions for mixed finite element formulations. Comp. Methods Appl. Mec. Engrg., 82 (1990) 27–57.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).CrossRefzbMATHGoogle Scholar
  6. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philidelphia (1997).CrossRefGoogle Scholar
  7. Paige, C.C., Saunders, A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12, (1975) 617–629.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Powell, C.E., Silvester, D.J.: Optimal preconditioning for Raviart-Thomas mixed formulation of second-order elliptic problems. Manchester Centre for Computational Mathematics Report, 399, (2002).Google Scholar
  9. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer-Verlag, (1994).Google Scholar
  10. Raviart, P.A., Thomas, J.A.: A mixed finite element method for second order elliptic problems. Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, 606. Springer-Verlag, New York (1977).Google Scholar
  11. Ruge, J.W., Stäben, K.: Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG). In: Paddon, D.J., Holstein, H., (eds.): Multigrid Methods for Integral and Differential Equations. The Institute of Mathematics and its Applications Conference Series. Oxford, (1985) 169–212Google Scholar
  12. Ruge, J.W., and Stüben, K.: Algebraic Multigrid. In: McCormick S.F. (ed.): Multigrid Methods. SIAM, Philadelphia, (1987) 73–130.CrossRefGoogle Scholar
  13. Rusten, T., Winther, R.: A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix. Anal. Appl., 13, 3, (1992) 887–904.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Silvester, D., Wathen, A.: Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners. SIAM J. Numer. Anal., 31, 5, (1994) 1352–1367.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Silvester, D., Wathen, A.: Fast and robust solvers for time-discretised incompressible Navier-Stokes equations. In: Griffiths, D.F., Watson, G.A, (eds.): Numerical Analysis 1995. Pitman Research Notes in Mathematics Series, 344, Longman (1996).Google Scholar
  16. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math., 128, (2001) 281–309.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Vassilevski, P.S., Lazarov, R.D.: Preconditioning mixed finite element saddle-point elliptic problems. Numer. Linear Algebra Appl. 3, 1, (1996) 1–20.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Wathen, A.J.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal., 7, 1, (1987) 449–457.MathSciNetzbMATHGoogle Scholar
  19. Wathen,A.,Silvester, D.Fast iterative solution of stabilised stokes systems part I:using simple diagonal preconditioners.SIAM J.Numer.Anal 30 3(1993)630–649MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Catherine Powell
    • 1
  • David Silvester
    • 1
  1. 1.Mathematics DepartmentUMISTManchester

Personalised recommendations