Skip to main content
  • 121 Accesses

Abstract

Different surgical techniques have been introduced as treatment options for chondral and osteochondral defects [31]. Apart from debridement or chondroplasty, opening of the marrow cavity is used to induce bleeding and to initiate the formation of fibrocartilaginous scar tissue. More recent techniques have tried to implement some type of biological surface repair. These treatments include the transplantation of chondrogenic materials such as periosteum [14], or perichondrium [3], as well as chondrocyte transplantation as a suspension [2], or the transplantation of tissue-engineered cartilage constructs [1, 6, 810, 13, [16, 18, 27, 29, 30]. Promising results have been reported and many investigators have focused their efforts on the creation of a more natural hyaline cartilage using isolated chondrocytes or mesenchymal stem cells on different types of carrier materials. Only a small piece of original cartilage must be sacrificed in order to propagate the number of cells in vitro, and to create a new cartilaginous matrix for implantation into a large defect. Maturation of the tissue in vitro is appealing because cartilage-specific matrix can be remodeled by the immobilized cultured cells before transplantation (Fig. 16.1). Various materials have been used in different experimental animals but a comparison of different carrier matrices cultured with chondrocytes in the same experimental set-up has not been carried out so far. We therefore investigated 3 resorbable matrices in an osteochondral defect model in the rabbit knee. The investigated matrices have previously been found suitable for the creation of tissue-engineered cartilage in vitro [2123].

This study was funded in part by grants from the Deutsche Forschungsgemeinschaft (DFG, Wi 494/14-1) and by the Deutsche Arthrose Hilfe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 18:781–789

    Article  PubMed  CAS  Google Scholar 

  2. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  3. Bruns J, Kersten P, Lierse W, Silbermann M (1992) Autologous rib perichondral grafts in experimentally induced osteochondral lesions in the sheep knee joint: morphological results. Virchows Arch 421:1–8

    Article  CAS  Google Scholar 

  4. Daniels K, Solursh M (1991) Modulation of chondrogenesis by the cytoskeleton and extracellular matrix. J Cell Science 100:249–254

    PubMed  Google Scholar 

  5. Domm C, Fay J, Schünke M, Kurz B (2000) Die Redifferenzierung von dedifferenzierten Gelenkknorpelzellen in Alginatkultur. Einfluss von intermittierendem hydrostatischen Druck und niedrigem Sauerstoffpartialdruck. Orthopäde 29:91–99

    PubMed  CAS  Google Scholar 

  6. Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28:891–899

    Article  PubMed  CAS  Google Scholar 

  7. Freed LE, Marquis JC, Nohria JC, Emmanual J, Mikos AG, Langer R (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27:11–23

    Article  PubMed  CAS  Google Scholar 

  8. Frenkel SR, Toolan BC, Menche D, Pitman MI, Pachence JM (1997) Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg-Br 79:831–836

    Article  PubMed  CAS  Google Scholar 

  9. Helbing G (1982) Transplantation isolierter Chondrozyten in Gelenkknorpel-Defekte. Fortschr Med 100:83–87

    PubMed  CAS  Google Scholar 

  10. Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, Lust G (1994) Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 12:485–497

    Article  PubMed  CAS  Google Scholar 

  11. Hirschmann F, Verhoeyen E, Wirth D, Bauwens S, Häuser H, Rudert M (2002) Vital marking of articular chondrocytes by retroviral infection using green fluorescence protein. Osteoarthritis Cartilage 10:109–118

    Article  PubMed  CAS  Google Scholar 

  12. Im GI, Kim DY, Shin JH, Hyun CW, Cho WH (2001) Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg-Br 83:289–294

    Article  PubMed  CAS  Google Scholar 

  13. Nehrer S, Breinan HA, Ramappa A et al. (1998) Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 19:2313–2328

    Article  PubMed  CAS  Google Scholar 

  14. O’Driscoll SW (1999) Articular cartilage regeneration using periosteum. Clin Orthop 367 [Suppl]:S186–S203

    PubMed  Google Scholar 

  15. O’Driscoll SW, Keeley FW, Salter RB (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfacesunder the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg-A 70:595–606

    Google Scholar 

  16. Perka C, Schultz O, Sittinger M, Zippel H (2000) Chondrozytentransplantation in PGLA Polydioxanon-Vliesen. Orthopäde 29:112–119

    PubMed  CAS  Google Scholar 

  17. Pineda S, Pollack A, Stevenson S, Goldberg VM, Caplan AI (1992) A semiquantitative scale for histologie grading of articular cartilage repair. Acta Anat 143:335–340

    Article  PubMed  CAS  Google Scholar 

  18. Rahfoth B Weisser J Sternkopf F Aigner T von der M Brauer R 1998 Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 650–65

    Article  PubMed  CAS  Google Scholar 

  19. Ramdi H, Tahri-Jouti MA, Lievremont M (1993) Immobilized articular chondrocytes: in vitro production of extracellular matrix compounds. Biomat Artif Cells Immob Biotech 21:335–341

    CAS  Google Scholar 

  20. Rudert M (2002) Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissues Organs 171:229–240

    Article  PubMed  Google Scholar 

  21. Rudert M, Hirschmann F, Schulze M, Wirth CJ (2000) Bioartificial cartilage. Cells Tissues Organs 167:95–105

    Article  PubMed  CAS  Google Scholar 

  22. Rudert M, Hirschmann F, Wirth CJ (1999) Wachstumsverhalten von Chondrozyten auf unterschiedlichen Trägersubstanzen. Orthopäde 28:68–75

    PubMed  CAS  Google Scholar 

  23. Rudert M, Wirth CJ, Schulze M, Reiss G (1998) Synthesis of articular cartilage like tissue in vitro. Arch Orthop Trauma Surg 117:141–146

    Article  PubMed  CAS  Google Scholar 

  24. Shahgaldi BF, Amis AA, Heatley FW, McDowell J, Bentley G (1991) Repair of cartilage lesions using biological implants. A comparative histological and biomechanical study in goats. J Bone Joint Surg-Br 73:57–64

    PubMed  CAS  Google Scholar 

  25. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of fullthickness defects of articular cartilage. J Bone Joint Surg-A 75:532–553

    CAS  Google Scholar 

  26. Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester GR (1994) Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15:451–456

    Article  PubMed  CAS  Google Scholar 

  27. Vacanti CA, Kim WS, Schloo B, Upton J, Vacanti JP (1994) Joint resurfacing with cartilage grown in situ from cell-polymer structures. Am J Sports Med 22:485–488

    Article  PubMed  CAS  Google Scholar 

  28. von der Mark K (1986) Differentiation, modulation and dedifferentiation of chondrocytes. Rheumatology 10:272–315

    Google Scholar 

  29. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg-A 76:579–592

    CAS  Google Scholar 

  30. Weisser J, Rahfoth B, Timmermann A, Aigner T, Bräuer R, von der Mark K (2001) Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose. Osteoarthritis Cartilage 9 [Suppl A]:48–54

    Article  Google Scholar 

  31. Wirth CJ, Rudert M (1996) Techniques of cartilage growth enhancement: a review of the literature. Arthroscopy 12:300–308

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rudert, M. (2003). Chondrocytes and Polymer Fleeces. In: Hendrich, C., Nöth, U., Eulert, J. (eds) Cartilage Surgery and Future Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19008-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19008-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01054-8

  • Online ISBN: 978-3-642-19008-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics