An Integration Strategy for Distributed Recommender Services in Legacy Library Systems

  • Andreas Geyer-Schulz
  • Michael Hahsler
  • Andreas Neumann
  • Anke Thede
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Scientific library systems are a very promising application area for recommender services. Scientific libraries could easily develop customer-oriented service portals in the style of amazon.com. Students, university teachers and researchers can reduce their transaction cost (i.e. search and evaluation cost of information products). For librarians, the advantage is an improvement of the customer support by recommendations and the additional support in marketing research, product evaluation, and book selection. In this contribution we present a strategy for integrating a behavior-based distributed recommender service in legacy library systems with minimal changes in the legacy systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BÖHM, W., GEYER-SCHULZ, A., HAHSLER, M. and JAHN, M. (2002): Repeat-Buying Theory and Its Application for Recommender Services. In: O. Opitz and M. Schwaiger (Eds.): Exploratory Data Analysis in Empirical Research. Springer, Heidelberg, 229–239.Google Scholar
  2. EHRENBERG, A.S.C. (1988): Repeat-Buying: Facts, Theory and Applications. Charles Griffin & Company Ltd, London.Google Scholar
  3. GEYER-SCHULZ, A. and HAHSLER, M. (2001): Pinboards and Virtual Libraries-Analysis Patterns for Collaboration. Technical Report 1, Institut für Informationsverarbeitung und-wirtschaft, Wirtschaftsuniverität Wien, Augasse 2-6, A-1090 Wien.Google Scholar
  4. GEYER-SCHULZ, A., HAHSLER, M. and JAHN, M. (2001): Educational and Scientific Recommender Systems: Designing the Information Channels of the Virtual University. Int. Journal of Engineering Education, 17 (2), 153–163.Google Scholar
  5. GEYER-SCHULZ, A., HAHSLER, M. and JAHN, M. (2002): Recommendations for Virtual Universities from Observed User Behavior. In: W. Gaul and G. Ritter (Eds.): Classification, Automation, and New Media. Springer, Heidelberg, 273–280.CrossRefGoogle Scholar
  6. KLATT, R., GAVRIILIDIS, K., KLEINSIMLINGHAUS, K. and FELDMANN, M. (2001): Nutzung und Potenziale der innovativen Mediennutzung im Lernalltag der Hochschulen. Sozialforschungsstelle Dortmund, BMBF-Studie, http://www.stefi.de/.Google Scholar
  7. RUSSELL, S. and NORVIG, P. (1995): Artificial Intelligence: A Modern Approach — The Intelligent Agent Book. Prentice-Hall, Upper Saddle River.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Andreas Geyer-Schulz
    • 1
  • Michael Hahsler
    • 2
  • Andreas Neumann
    • 1
  • Anke Thede
    • 1
  1. 1.Schroff-Stiftungslehrstuhl Informationsdienste und elektronische MarkteUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Institut für Informationsverarbeitung und InformationswirtschaftWU-WienWienAustria

Personalised recommendations