Skip to main content

Über die lernende Regelung autonomer Fahrzeuge mit neuronalen Netzen

  • Conference paper
Autonome Mobile Systeme 2003

Part of the book series: Informatik aktuell ((INFORMAT))

  • 240 Accesses

Zusammenfassung

Ein genereller Ansatz für das Pfad-Folgeproblem bei autonomen Fahrzeugen wird vorgestellt. Mit Hilfe eines kinematischen Modells und der allgemeinen Lernfähigkeit eines künstlichen neuronalen Netzes wird ein adaptiver Regler entwickelt. Dieser Regler benötigt kein dynamisches Modell des Fahrzeuges, da es erlernt wird. Die Funktion des theoretischen Konzepts wird in Experimenten auf dem Fahrsimulator verifiziert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. J. Ackermann, “Robust decoupling, ideal steering dynamics and yaw stabilization of 4WS car,” Automatica, vol. 30, no. 11, pp. 1761–1768, 1994.

    Article  Google Scholar 

  2. A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch, “Control and stabilization of nonholonomic dynamic systems,” IEEE Trans. Auto. Contr., Vol. 37, pp. 1746–1757, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Contr. Signals Syst., Vol. 2 no. 3, pp. 303–314, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Dong and W.L. Xu, “Adaptive Tracking Control of Uncertain Nonholonomic Dynamic System,” IEEE Transactions on Automatic Control, Vol. 43, no. 3, 2001, pp 450–454.

    Article  MathSciNet  Google Scholar 

  5. W. Dong, K.-D. Kuhnert, ‘Robust Adaptive Neural Network Based Control of Autonomous Vehicles“, submitted to IEEE Jornal on Intelligent Transport Systems.

    Google Scholar 

  6. T. Fujioka et al., “Longitudinal vehicle following control for autonomous driving,” in Proc. AVEC’96 Int. Symp. Advanced Vehicle Control, Germany, June 24–28, 1996, pp. 1293–1304.

    Google Scholar 

  7. J. K. Hedrick et al., “Longitudinal vehicle controller design for IVHS systems,” in Proc. Amer. Control Conf., 1991, pp. 3107–3111.

    Google Scholar 

  8. Y. Hirano, H. Harada, E. Ono, and K. Takanami, “Development of an integrated system of 4WS and 4WD by H control,” in SAE Paper 930 267, 1993, pp. 79–86.

    Google Scholar 

  9. K Hornik, M. Stinchombe, and H. White, “Multilayer feedforward networks are universal appraximators,” Neural Networks, Vol.2, pp.359–366, 1989.

    Article  Google Scholar 

  10. Y. Jia, “Robust Control with Decoupling Performance for Steering and Traction of 4WS Vehicles under Velocity-Varying Motion,” IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 3, pp.554–569, 2000.

    Article  Google Scholar 

  11. N. Kehtarnavaz, N. Griswold, K. Miller, and P. Lescoe, “A Transportable Neural-Network Approach to Autonomous Vehicle Following,” IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 2, pp.694–702, 1998.

    Article  Google Scholar 

  12. M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., New York, 1995.

    Google Scholar 

  13. M. Krödel, K.-D. Kuhnert, ‘Pattern matching for either autonomous driving or driver assistance systems“. IEEE Inteligent, Vehicle Symposium (IV’2002), June 17–21, 2002, versailes, France.

    Google Scholar 

  14. M. Krödel, K.-D. Kuhnert ‘Reinforcement learning to drive a car by pattern matching“, The 28th Annual Conference of the IEEE Industrial Electronics Society (IECON 2002), November 5–8, Sevillia, Spain, pp. 1728–1734.

    Google Scholar 

  15. K.-D. Kuhnert, M. Krödel, ‘Autonomous driving by pattern matching and reinforcement learning”, Int’l Colloquium on Autonomous and Mobile Systems. June 25–26, 2002, Magdeburg, Germany.

    Google Scholar 

  16. K.-D. Kuhnert, M. Krödel, W. Dong, ‘Lernen als Paradigma für die Fahrerassistenzsysteme der nächsten Generation“, Workshop Fahrerassistenzsysteme. Oktober 9–11, 2002, Walting, Germany.

    Google Scholar 

  17. F. Lewis, C. Abdallah, and D. Dawson, Control of Robot Manipulators. Macmillan: New York, 1993.

    Google Scholar 

  18. F.L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller with guaranteed tracking performance,” IEEE Trans. on Neural Networks, Vol.7, no.2, pp.388–399, 1996.

    Article  Google Scholar 

  19. D. H. McMahon et al., “Longitudinal vehicle controller design for IVHS: Theory and experiment,” in Proc. Amer. Control Conf., 1992, pp. 1753–1757.

    Google Scholar 

  20. T. S. No, K.-T. Chong, and D.-H. Roh, “A Lyapunov Function Approach to Longitudinal Control of Vehicles in a Platoon,” IEEE Transactions on Vehicular Technology, Vol. 50, no. 1, 4, 2001.

    Google Scholar 

  21. S. Oh, J. Lee, and D. Choi, “A New Reinforcement Learning Vehicle Control Architecture for Vision-Based Road Following,” IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 3, pp.997–1005, 2000.

    Article  Google Scholar 

  22. E. Ono, K. Takanami, N. Iwama, Y. Hayashi, Y. Hirano, and Y. Satoh, “Vehicle integrated control for steering and traction systems by-synthesis,” Automatica, vol. 30, no. 11, pp. 1639–1647, 1994.

    Article  Google Scholar 

  23. A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural network,” in Advances in Neural Information Processing, vol. 1. San Francisco, CA: Morgan-Kaufman, 1989.

    Google Scholar 

  24. I. Rivals, D. Canas, L. Personnaz, and G. Dreyfus, “Modeling and control of mobile robots and intelligent vehicles by neural networks,” in Proc. IEEE Intelligent Vehicle Symp., Paris, France, Oct. 1994, pp.137–142.

    Google Scholar 

  25. Seibum B. Choi, “The Design of a Look-Down Feedback Adaptive Controller for the Lateral Control of Frant-Wheel-Steering Autonomous Highway Vehicles,” IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 6, 2257–2269, 2000.

    Article  Google Scholar 

  26. S. E. Shladover, “Longitudinal control of automated guideway transit vehicles within platoons,” J. Dyn. Syst., Measure., Contr., vol. 100, pp. 302–310, 1978.

    Article  Google Scholar 

  27. S. E. Shladover, “Longitudinal control of automotive vehicles in close-formation platoons,” J. Dyn. Syst., Measure., Contr., vol. 113, pp. 231–241, 1991.

    Article  Google Scholar 

  28. S. Sheikholeslam and C. A. Desoer, “Longitudinal control of a platoon of vehicles I: Linear model,” PATH, Res. Rep. UCB-ITS-PRR-89-3, Aug. 19, 1989.

    Google Scholar 

  29. H.T. Sussmann and P. Kokotovic, “The peaking phenomenon and the global stabilization of nonlinear systems,” IEEE Trans. Auto. Contr., Vol.36, pp.424–440, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Swaroop, J. K. Hedrick, and S. B. Choi, “Direct Adaptive Longitudinal Control of Vehicle Platoons,” IEEE Transactions on Vehicular Technology, Vol. 50, no. 1, pp.150–161, 2001.

    Article  Google Scholar 

  31. Jeng-Yu Wang and Masayoshi Tomizuka, “Gain-Scheduled H-infinity Loop-Shaping Control for Automated Lane Guidance of Tactor-Semitrailer Combination Vehicles,” Proc. of American Control Conference, Chicago, June 2000.

    Google Scholar 

  32. Jeng-Yu Wang and Masayoshi Tomizuka, “Robust H-infinite Lateral Control of Heavy-Duty Vehicles in Automated Highway System,” 1999 IEEE American Control Conference, San Diego, June 1999.

    Google Scholar 

  33. G. Yu, I. K. Sethi, “Road following with continuous learning”, in Proc. Intelligent Vehicle’95, Detroit, MI, pp. 412–417.

    Google Scholar 

  34. S. H. Yu and J. I. Moskwa, “A global approach to vehicle control: Coordination of four wheel steering and wheel torques,” ASME Trans. J.Dynamics, Measurement, Contr., vol. 116, pp. 659–667, Dec. 1994.

    Article  MATH  Google Scholar 

  35. C. Samson, “Path following and time-varying feedback stabilization of wheeled mobile robot,” Conf. of Int. Conf. ICARCV, Vol.1, Singapore, 1992.

    Google Scholar 

  36. Y. Zhang, E.B. Kosmatopoulos, P.A. Ioannou, C.C. Chien, “Autonomous Intelligent Cruise Control Using Front and Back Information for Tight Vehicle Following Maneuvers,” IEEE Transactions on Vehicular Technology, Vol.48, No. 1. pp.319–328, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuhnert, KD., Dong, W. (2003). Über die lernende Regelung autonomer Fahrzeuge mit neuronalen Netzen. In: Dillmann, R., Wörn, H., Gockel, T. (eds) Autonome Mobile Systeme 2003. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18986-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18986-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20142-7

  • Online ISBN: 978-3-642-18986-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics