Skip to main content

A Real-coded Genetic Algorithm using the Unimodal Normal Distribution Crossover

  • Chapter

Part of the Natural Computing Series book series (NCS)

Abstract

This chapter presents a real-coded genetic algorithm using the Unimodal Normal Distribution Crossover (UNDX) that can efficiently optimize functions with epistasis among parameters. Most conventional crossover operators for function optimization have been reported to have a serious problem in that their performance deteriorates considerably when they are applied to functions with epistasis among parameters. We believe that the reason for the poor performance of the conventional crossover operators is that they cannot keep the distribution of individuals unchanged in the process of repetitive crossover operations on functions with epistasis among parameters. In considering the above problem, we introduce three guidelines, ‘Preservation of Statistics’, ‘Diversity of Offspring’, and ‘Enhancement of Robustness’, for designing crossover operators that show good performance even on epistatic functions. We show that the UNDX meets the guidelines very well by a theoretical analysis and that the UNDX shows better performance than some conventional crossover operators by applying them to some benchmark functions including multimodal and epistatic ones. We also discuss some improvements of the UNDX under the guidelines and the relation between real-coded genetic algorithms using the UNDX and evolution strategies (ESs) using the correlated mutation.

Keywords

  • Genetic Algorithm
  • Crossover Operator
  • Benchmark Function
  • Parallel Component
  • Orthogonal Component

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-18965-4_8
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-18965-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Back, T., Hoffmeister, F. and Schwefel, H.-P. (1991) A Survey of Evolution Strategies, Proc. 4th Int’l Conf. on Genetic Algorithms, 2–9

    Google Scholar 

  2. Beyer, H.-G. and Deb, K. (2000) On the Desired Behaviors of Self-Adaptive Evolutionary Algorithms, Parallel Problem Solving from Nature VI (PPSN VI), 59–68

    Google Scholar 

  3. Davis, L. (1990) The Handbook of Genetic Algorithms, Van Nostrand Rein-hold, New York

    Google Scholar 

  4. Deb, K. and Agrawal, R.B. (1995) Simulated Binary Crossover for Continuous Search Space, Complex Systems, 9, 115–148

    MathSciNet  MATH  Google Scholar 

  5. Deb, K. and Beyer, H.-G. (1999) Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover, Proc. Genetic and Evolutionary Computation Conf. 1999 (GECCO-99), 172–179

    Google Scholar 

  6. Deb, K. and Beyer, H.-G. (1999) Self-Adaptive Genetic Algorithms with Simulated Binary Crossover, Technical Report No. CI-61/99, Dept. Computer Science/XI, Univ. of Dortmund

    Google Scholar 

  7. Eshleman, L. J. and Schaffer, J. D. (1993) Real-Coded Genetic Algorithms and Interval-Schemata, Foundations of Genetic Algorithms, 2, 187–202

    Google Scholar 

  8. Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, heading, MA

    MATH  Google Scholar 

  9. Jonikow, C. Z. and Michalewicz, Z. (1991) An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms, Proc. 4th Int’l Conf. on Genetic Algorithms, 31–36

    Google Scholar 

  10. Kita, H., Ono, I. and Kobayashi, S. (1999) Multi-parental Extension of the Unimodal Normal Distribution Crossover for Real-coded Genetic Algorithms, Proc. 1999 Congress on Evolutionary Computation (CEC’99), 1581–1587

    Google Scholar 

  11. Kita, H., Ono, I. and Kobayashi, S. (1998) Theoretical Analysis of the Unimodal Normal Distribution Crossover for Real-coded Genetic Algorithms, Proc. 1998 IEEE Int’l Conf. on Evolutionary Computation, 529–534

    Google Scholar 

  12. Kita, H. and Yamamura, M. (1999) A Functional Specialization Hypothesis for Designing Genetic Algorithms, Proc. 1999 IEEE Int’l. Conf. on Systems, Man, and Cybernetics, 579–584

    Google Scholar 

  13. Michalewicz, Z. (1992) Genetic Algorithms+Data Structures=Evolution Programs, Springer-Verlag, Berlin

    MATH  CrossRef  Google Scholar 

  14. Mühlenbein, H. and Schlierkamp-Voosen, D. (1993) Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization, Evolutionary Computation, Vol.1, 25–49

    Google Scholar 

  15. Nomura, T. (1997) An Analysis on Crossover for Real Number Chromosomes in an Infinite Population Size, Proc. 15th Int’l Joint Conf. on Artificial Intelligence, 936–941

    Google Scholar 

  16. Ono, I. and Kobayashi, S. (1997) A Real-coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover, Proc. 7th Int’l Conf. on Genetic Algorithms, 246–253

    Google Scholar 

  17. Ono, I., Kobayashi, S. and Yoshida, K. (1998) Global and Multi-objective Optimization for Lens Design by Real-coded Genetic Algorithms, SPIE Proc. Vol. 3482, International Optical Design Conference, 110–121

    Google Scholar 

  18. Ono, I., Yamamura, M., Kobayashi, S. (1996) A Genetic Algorithm with Characteristic Preservation for Function Optimization, Proc. IIZUKA’96, 511–514

    Google Scholar 

  19. Qi, X. and Palmieri, F. (1994) Theoretical Analysis of Evolutionary Algorithms with an Infinite Population Size in Continuous Space Part I: Basic Properties of Selection and Mutation, Part II: Analysis of Diversification Role of Crossover, IEEE Transactions on Neural Networks, Vol. 5, No. 1, 102–119, 120-129

    CrossRef  Google Scholar 

  20. Radcliffe, N.J. (1991) Forma Analysis and Random Respectful Recombination, Proc. 4th Int’l Conf. on Genetic Algorithms, 222–229

    Google Scholar 

  21. Rechenberg, I. (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog Verlag, Stuttgart

    Google Scholar 

  22. Salomon, R. (1996) Performance Degradation of Genetic Algorithms Under Coordinate Rotation, Proc. 5th Annual Conf. on Evolutionary Programming, 155–161

    Google Scholar 

  23. Satoh, H., Yamamura, M. and Kobayashi, S. (1996) Minimal Generation Gap Model for GAs Considering Both Exploration and Exploitation, Proc. IIZUKA’96, 494–497

    Google Scholar 

  24. Schwefel, H.-P. (1981) Numerical optimization of computer models, Wiley, Chichester

    MATH  Google Scholar 

  25. Tsutsui, S., Yamamura, M. and Higuchi, T. (1999) Multi-parent Recombination with Simplex Crossover in Real Coded Genetic Algorithms, Proc. Genetic and Evolutionary Computation Conf. (GECCO’99), 657–664

    Google Scholar 

  26. Voigt, H.-M., Mühlenbein, H. and Gvetkovic, D. (1995) Fuzzy Recombination for the Breeder Genetic Algorithm, Proc. 6th Int’l Conf. on Genetic Algorithms, 104–111

    Google Scholar 

  27. Whitley, D., Starkweather, T. and Fuauay, D. (1989) Scheduling Problems and Traveling Salesman: The Genetic Edge Reconbination Operator, Proc. 3rd Int’l Conf. on Genetic Algorithms, 133–140

    Google Scholar 

  28. Wright, A. (1991) Genetic Algorithms for Real Parameter Optimization, Foundations of Genetic Algorithms, 205–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ono, I., Kita, H., Kobayashi, S. (2003). A Real-coded Genetic Algorithm using the Unimodal Normal Distribution Crossover. In: Ghosh, A., Tsutsui, S. (eds) Advances in Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18965-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18965-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62386-8

  • Online ISBN: 978-3-642-18965-4

  • eBook Packages: Springer Book Archive