Advertisement

Multiparent Recombination in Evolutionary Computing

  • A. E. Eiben
Part of the Natural Computing Series book series (NCS)

Abstract

This chapter considers multiparent reproduction, where more than two parents are involved in creating offspring. First we give a survey of multiparent operators that have been introduced over the years in evolutionary computing and we reformulate the traditional mutation-or-crossover debate in the light of such operators. Second, we present some existing results on the usefulness of multiparent operators. We conclude the chapter with a look at future developments and some suggestions for further research.

Keywords

Genetic Algorithm Crossover Point Fitness Landscape Uniform Crossover Evolution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackley, D. H. (1987) An empirical study of bit vector function optimization. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, 170–215 Morgan Kaufmann, San Francisco.Google Scholar
  2. 2.
    Bäck, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York.zbMATHGoogle Scholar
  3. 3.
    Bäck, T., Michalewicz, Z. (1997) Test landscapes. In T. Baeck, D. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Computation, pages B2.7:14-B2.7:20. Institute of Physics Publishing, Bristol, and Oxford University Press, New York.CrossRefGoogle Scholar
  4. 4.
    Belew, R. K., Booker, L. B. (eds.) (1991) Proceedings of the 4th International Conference on Genetic Algorithms Morgan Kaufmann, San Francisco.Google Scholar
  5. 5.
    Bersini, H., Seront, G. (1992) In search of a good evolution-optimization crossover. In R. Maenner and B. Manderick, editors, Proceedings of the 2nd Conference on Parallel Problem Solving from Nature, 479–488 North-Holland, Amsterdam.Google Scholar
  6. 6.
    Bersini, H., Varela, F.J. (1991) The immune recruitment mechanism: A selective evolutionary strategy. In Belew and Booker [4], 520–526.Google Scholar
  7. 7.
    Beyer, H. G. (1995) Toward a theory of evolution strategies: On the benefits of the (μ/ μ, λ) theory. Evolutionary Computation, 3(1):81–111.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bremermann, H. J., Rogson, M., Salaff, S. (1966) Global properties of evolution processes. In H.H. Pattee, E.A. Edlsack, L. Fein, and A.B. Callahan, editors, Natural Automata and Useful Simulations, 3–41 Spartan Books, Washington, DC.Google Scholar
  9. 9.
    Davidor, Y., Schwefel, H. P., Männer, R. (eds.) (1994) Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, number 866 in Lecture Notes in Computer Science. Springer, Berlin.Google Scholar
  10. 10.
    Davis, L. (1989) Adapting operator probabilities in genetic algorithms. In Schaffer [36], 61–69.Google Scholar
  11. 11.
    Eiben, A. E., Bäck, Th. (1997) An empirical investigation of multi-parent recombination operators in evolution strategies. Evolutionary Computation, 5(3):347–365.CrossRefGoogle Scholar
  12. 12.
    Eiben, A. E., Jelasity, M. (1992) A critical note on experimental research methodology in EC. In 2002 Congress on Evolutionary Computation (CEC’2002), 582–587. IEEE Press, Piscataway, NJ.Google Scholar
  13. 13.
    Eiben, A.E., Rau é, P.E., Ruttkay, Zs. (1994) Genetic algorithms with multiparent recombination. In Davidor et al. [9], 78–87.Google Scholar
  14. 14.
    Eiben, A. E., Schippers, C. A. (1996) Multi-parent’s niche: n-ary crossovers on NK-landscapes. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the 4th Conference on Parallel Problem Solving from Nature, number 1141 in Lecture Notes in Computer Science, pages 319–328. Springer, Berlin.Google Scholar
  15. 15.
    Eiben, A.E., Sprinkhuizen-Kuyper, I.G., Thijssen, B.A. (1998) Competing crossovers in an adaptive GA framework. In [26], 787–792.Google Scholar
  16. 16.
    Eiben, A. E., van Kemenade, C.H. M. (1997) Diagonal crossover in genetic algorithms for numerical optimization. Journal of Control and Cybernetics, 26(3):447–465.zbMATHGoogle Scholar
  17. 17.
    Eiben, A. E., van Kemenade, C. H.M. (1995) Performance of multi-parent crossover operators on numerical function optimization problems. Technical Report TR-95-33, Leiden University; available from http://www.liacs.nl/TechRep/1995/.
  18. 18.
    Eiben, A.E., van Kemenade, C.H.M., KOK, J.N.(1995) Orgy in the Computer:Multi-parent reproduction in genetic algorithm. In Moraen et al. [31], 934–945.Google Scholar
  19. 19.
    Eshelman, L.J., Mathias, K.E., Schaffer, J.D. (1997) Crossover operator biases: Exploiting the population distribution. In Th. Baeck, editor, Proceedings of the 7th International Conference on Genetic Algorithms, 354–361. Morgan Kaufmann, San Francisco.Google Scholar
  20. 20.
    Eshelman, L.J., Schaffer, J. D. (1993) Crossover’s niche. In Forrest [23], 9–14.Google Scholar
  21. 21.
    Fogel, D.B., Atmar, J. W. (1990) Comparing genetic operators with Gaussian mutations in simulated evolutionary processes using linear systems. Biological Cybernetics, 63:111–114.CrossRefGoogle Scholar
  22. 22.
    Fogel, D.B., Atmar, J.W. (1990) Fogel, D. B., Stayton, L. C. (1994) On the effectiveness of crossover in simulated evolutionary optimization. Biosystems, 32:171–182.CrossRefGoogle Scholar
  23. 23.
    Forrest, S. (ed.) (1993) Proceedings of the 5th International Conference on Genetic Algorithms. Morgan Kaufmann, San Francisco.Google Scholar
  24. 24.
    Furuya, H., Haftka, R. T. (1993) Genetic algorithms for placing actuators on space structures. In Forrest [23], 536–542.Google Scholar
  25. 25.
    Hordijk, W., Manderick, B. (1995) The usefulness of recombination. In Moraen et al. [31], 908–919.Google Scholar
  26. 26.
    IEEE Proceedings of the 1995 IEEE Conference on Evolutionary Computation. IEEE Press, Piscataway, NJ.Google Scholar
  27. 27.
    IEEE Proceedings of the 1996 IEEE Conference on Evolutionary Computation. IEEE Press, Piscataway, NJ.Google Scholar
  28. 28.
    Kauffman, S.A. (1993) Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York.Google Scholar
  29. 29.
    Kaufman, H. (1967) An experimental investigation of process identification by competitive evolution. IEEE Transactions on Systems Science and Cybernetics, SSC-3(1), 11–16.CrossRefGoogle Scholar
  30. 30.
    Mitchell, M., Forrest, S., Holland, J. H. (1994) The royal road for genetic algorithms: Fitness landscapes and GA performance. In F.J. Varela and P. Bourgine, editors, Toward a Practice of Autonomous Systems: Proceedings of the 1st European Conference on Artificial Life, pages 245–254. The MIT Press, Cambridge, MA.Google Scholar
  31. 31.
    Mor án, F., Moreno, A., Merelo, J. J., Chacón, P. (eds) (1995) Advances in Artificial Life. Third International Conference on Artificial Life, volume 929 of Lecture Notes in Artificial Intelligence. Springer, Berlin.Google Scholar
  32. 32.
    Mühlenbein, H. (1989) Parallel genetic algorithms, population genetics and combinatorial optimization. In Schaffer [36], 416–421.Google Scholar
  33. 33.
    Müh lenbein, H., Voigt, H. M. (1996) Gene pool recombination in genetic algorithms. In I.H. Osman and J.P. Kelly, editors, Meta-Heuristics: Theory and Applications, 53–62 Boston, London, Dordrecht, Kluwer Academic Publishers.Google Scholar
  34. 34.
    Pál, K. F. (1994) Selection schemes with spatial isolation for genetic optimization. In Davidor et al. [9], 170–179.Google Scholar
  35. 35.
    Renders, J. M., Bersini, H. (1994) Hybridizing genetic algorithms with hill-climbing methods for global optimization: Two possible ways. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages 312–317. IEEE Press, Piscataway NJ, 1994.Google Scholar
  36. 36.
    Schaffer, J. D. (ed) (1989) Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, San Francisco.Google Scholar
  37. 37.
    Schaffer, J. D., Eshelman, L.J. (1991) On crossover as an evolutionary viable strategy. In Belew and Booker [4], 61–68.Google Scholar
  38. 38.
    Schlierkamp-Voosen, D., Mühlenbein, H. (1996) Adaptation of population sizes by competing subpopulations. In [27], 330–335.Google Scholar
  39. 39.
    Schwefel, H. P. (1995) Evolution and Optimum Seeking. Wiley, New York.Google Scholar
  40. 40.
    Schwefel, H.P., Rudolph, G. (1995) Contemporary evolution strategies. In Moraenet al. [31], 893–907.Google Scholar
  41. 41.
    Smith, J., Fogarty, T. C. (1996) Recombination strategy adaptation via evolution of gene linkage. In [27], 826–831.Google Scholar
  42. 42.
    Spears, W. M. (1993) Crossover or mutation? In L.D. Whitley, editor, Foundations of Genetic Algorithms — 2, pages 221–238. Morgan Kaufmann, San Francisco.Google Scholar
  43. 43.
    Spears, W. M. (1995) Adapting crossover in evolutionary algorithms. In J.R. McDonnell, R.G. Reynolds, and D.B. Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary Programming, pages 367–384. MIT Press, Cambridge, MP. 44. Tsutsui, S. (1998) Multi-parent recombination in genetic algorithms with search space boundary extension by mirroring. In A.E. Eiben, Th. Baeck, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of the 5th Conference on Parallel Problem Solving from Nature, number 1498 in Lecture Notes in Computer Science, 428–437. Springer, Berlin.Google Scholar
  44. 45.
    Tsutsui, S., Ghosh, A. (1998) A study on the effect of multi-parent recombination in real coded genetic algorithms. In Proceedings of the 1998 IEEE Conference on Evolutionary Computation, 828–833. IEEE Press, Piscataway, NJ.Google Scholar
  45. 46.
    Tsutsui, S., Yamamura, M., Higuchi, T. (1999) Multi-parent recombination with simplex crossover in real coded genetic algorithms. In W. Banzhaf, J. Daida, A.E. Eiben, H.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999), 657–664. Morgan Kaufmann, San Francisco.Google Scholar
  46. 47.
    van Kemenade, C. H. M. Kok, J. N., Eiben, A. E. (1995) Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness. In [26], 346–351.Google Scholar
  47. 48.
    Voigt, H. M., Ühlenbein, H. M. (1995) Gene pool recombination and utilization of covariances for the Breeder Genetic Algorithm. In [26), 172–177.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. E. Eiben
    • 1
  1. 1.Free University AmsterdamThe Netherlands

Personalised recommendations