Skip to main content

Application of Evolutionary Computation to Protein Folding

  • Chapter
  • 810 Accesses

Part of the book series: Natural Computing Series ((NCS))

Abstract

This chapter demonstrates the application of genetic algorithms to the ab initio protein folding problem. In particular, solutions to the representation issue of protein tertiary structure, of domain-specific genetic operators and a vector fitness function for fold evaluation are presented. Finally, limitations of this approach are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland J.O. (1973) Genetic algorithms and the optimal allocations of trials. SIAM Journal of Computing, 2, 88–105.

    Article  MathSciNet  MATH  Google Scholar 

  2. Rechenberg I. (1973) Bioinik, Evolution und Optimierung. Naturwissenschaftliche Rundschau, 26, 465–472.

    Google Scholar 

  3. Koza J. (1993), Genetic Programming, MIT Press.

    Google Scholar 

  4. Kirkpatrick S., Gelatt C.D. Jr., Vecchi M.P. (1983) Optimization by simulated annealing. Science, 4598, 671–680.

    Article  MathSciNet  Google Scholar 

  5. Jones T., Forrest S. (1993) An introduction to SFI Echo, Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe NM 87501, e-mail: terry@sanatfe.edu, forrest@cs.unm.edu.

    Google Scholar 

  6. Holland J.H. (1993) Echoing emergence: Objectives, rough Definitions and speculations for echo-class models. In: Integrative Themes, (G. Cowan, D. Pines, D. Melzner, eds.), Santa Fe Institute Studies in the Science of Complexity, Proc. Vol XIX, Addison-Wesley.

    Google Scholar 

  7. Holland J.H. (1992) Adaptation in Natural and Artificial Systems. 2nd Ed., MIT Press.

    Google Scholar 

  8. Goldberg D. E. (1989) Genetic Algorithms in Search, Optimization& Machine Learning. Addison-Wesley.

    Google Scholar 

  9. Schulz G.E., Schirmer R.H. (1979) Principles of Protein Structure. Springer Verlag.

    Google Scholar 

  10. Lesk A.M. (1991) Protein Architecture — A Practical Approach. IRL Press.

    Google Scholar 

  11. Branden C., Tooze J. (1991) Introduction to Protein Structure. Garland Publishing.

    Google Scholar 

  12. Schulze-Kremer S. (1992) Genetic algorithms for protein tertiary structure prediction. In: Parallel Problem Solving from Nature II, (R. Männer, B. Manderick, eds.), Springer-Verlag, 391–400.

    Google Scholar 

  13. For more information or to get in touch with researchers using genetic algorithms send an e-mail to one of the following mailing lists: ga-molecule@interval.com, ga-list-request@aic.nrl.navy.mil or to Melanie Mitchell at mm@santafe.edu who keeps an extensive bibliography on applications of genetic algorithms in chemistry.

    Google Scholar 

  14. Dandekar T., Argos P. (1992) Potential of genetic algorithms in protein folding and protein engineering simulations. Protein Engineering, 7, 637–645.

    Google Scholar 

  15. Le Grand S.M., Merz K.M. (1993) The application of the genetic algorithm to the minimization of potential energy functions. The Journal of Global Optimization, 3, 49–66.

    Article  MATH  Google Scholar 

  16. Sun S. (1994) Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Science, 5, 762–785.

    Google Scholar 

  17. Dandekar T., Argos P. (1994) Folding the main chain of small proteins with the genetic algorithm. Journal of Molecular Biology, 236, 844–861.

    Article  Google Scholar 

  18. r.m.s. = root mean square Deviation; two conformations are superimposed and the square root is calculated from the sum of the squares of the Distances between corresponding atoms.

    Google Scholar 

  19. Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F. Jr., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M. (1997) The protein Data bank: A computer-based archival file for macromolecular structures. Journal of Molecular Biology, 112, 535–542.

    Article  Google Scholar 

  20. Vinter J.G., Davis A., Saunders M.R. (1987) Strategic approaches to Drug Design. An integrated software framework for molecular modelling. Journal of Computer-Aided Molecular Design, 1, 31–51.

    Article  Google Scholar 

  21. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. (1983) Charmm: A program for macromolecular energy, minimization and Dynamics Calculations. Journal of Computational Chemistry, 4, 187–217.

    Article  Google Scholar 

  22. Ngo J.T., Marks J. (1992) Computational complexity of a problem in molecular-structure prediction. Protein Engineering, 5, 313–321.

    Article  Google Scholar 

  23. Davis L. (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold.

    Google Scholar 

  24. Lucasius C.B., Kateman G. (1989) Application of Genetic Algorithms to Chemometrics. Proceedings 3rd International Conference on Genetic Algorithms (J.D. Schaffer, ed.), Morgan Kaufmann, 170–176.

    Google Scholar 

  25. Tuffery P., Etchebest C, Hazout S., Lavery R. (1991) A new approach to the rapid determination of protein side chain conformations. J. Biomoi Struct. Dyn., 8,. 1267–1289.

    Article  Google Scholar 

  26. Hendrickson W.A., Teeter M M. (1981) Structure of the hydrophobic protein Crambin determined Directly from the anomalous scattering of sulphur. Nature, 290, 107.

    Article  Google Scholar 

  27. Lee C., Subbiah S. (1991) Prediction of protein side chain conformation by packing optimization. Journal of Molecular Biology, 217, 373–388.

    Article  Google Scholar 

  28. Maiorov N.M., Crippen G.M. (1992) Contact potential that recognizes the correct folding of globular proteins. Journal of Molecular Biology, 227, 876–888.

    Article  Google Scholar 

  29. Go N., Scheraga H. A. (1970) Ring closure and local conformational Deformations of chain molecules. Macromolecules, 3, 178–187.

    Article  Google Scholar 

  30. Quantum Chemical Exchange Program (QCEP) program No. QCMP 046.

    Google Scholar 

  31. Intel Paragon with 98 ? 1860 processors owned by Parallab, University of Bergen, Norway.

    Google Scholar 

  32. Lu S.Y., Fu K.S. (1978) A sentence-to-sentence clustering procedure for pattern analysis. IEEE Transactions on Systems, Man and Cybernatics, SMC, 8, 381–389.

    Article  MathSciNet  MATH  Google Scholar 

  33. Rost B., Sander C. (1993) Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, 232, 584–599.

    Article  Google Scholar 

  34. Cármenes R.S., Freije J.P., Molina M.M., Martin J.M. (1989) PREDICT7, a program for protein structure prediction. Biochem. Biophys. Res. Comm., 159, 687–693.

    Article  Google Scholar 

  35. Gamier J., Osguthorpe D.J., Robson B. (1978) Journal of Molecular Biology, 120, 97–120.

    Google Scholar 

  36. This is only available for test runs with known protein conformations.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulze-Kremer, S. (2003). Application of Evolutionary Computation to Protein Folding. In: Ghosh, A., Tsutsui, S. (eds) Advances in Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18965-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18965-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62386-8

  • Online ISBN: 978-3-642-18965-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics