Routing Optimization in Corporate Networks by Evolutionary Algorithms

  • Thomas Bäck
  • Claus Hillermeier
  • Jörg Ziegenhirt
Part of the Natural Computing Series book series (NCS)


The purpose of the research reported in this chapter is to meet the increasing and rapidly changing communication demands in a private telecommunication network. The goal is to improve the performance of a telecommunication system just by changes in its software components. The network topology and the tnmk capacities are viewed as fixed parameters, because a change in these components is very expensive. The algorithm of how to use this network is stored in a routing table that consists of alternative paths between the nodes that are supposed to be connected. So the goal of the evolutionary algorithm is to find a routing table that increases the performance of the network by reducing the probability of end-to-end-blocking. The investigated non-hierarchical networks require a fixed alternate routing (FAR) with sequential office control (SOG). The chapter presents a new approach based on evolutionary algorithms to solve this problem.


Genetic Algorithm Evolutionary Algorithm Strategy Parameter Fitness Evaluation Corporate Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bäck, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University PressGoogle Scholar
  2. 2.
    Fogel, D. B. (1995) Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJGoogle Scholar
  3. 3.
    Michalewicz, Z. (1996) Genetic Algorithms + Data Structures = Evolution Programs. Springer, BerlinGoogle Scholar
  4. 4.
    Davis, L., Orvosh, D., Cox, A., Qiu, Y. (1993) A Genetic Algorithm for Survivable Network Design. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, 408–415. Morgan Kaufmann, San Mateo, CAGoogle Scholar
  5. 5.
    Sinclair, M. C. (1993) The Application of a Genetic Algorithm to Trunk Network Routingtable Optimization. In IEE Proceedings of the Tenth UK Teletraffic Symposium, 2/1-2/6. Martlesham (UK)Google Scholar
  6. 6.
    Hillermeier, C., Weber, D. (1997) Optimal Routing in Private Networks using Genetic Algorithms. Proceedings of the ISS ’97: World Telecommunication Congress, Toronto, 1, 523–531Google Scholar
  7. 7.
    Pregla, R. (1984) Grundlagen der Elektrotechnik, Teil I: Felder und Gleichstromnetzwerke. Dr. Alfred Hüthig Verlag, HeidelbergGoogle Scholar
  8. 8.
    Ziegenhirt, J. (1998) Optimierung von Routingtabellen in Privaten Netzen mit Evolutionären Algorithmen. Technical Report SYS-3/98, Universität DortmundGoogle Scholar
  9. 9.
    Bai, Z., Hartmann, H. L., He, H., Weber D. (1996) Engineering and Routing for Modular Private ISDNs: Models, New Concepts, Fast Algorithms and Advanced Tools. In Proceedings of Networks ’96 Google Scholar
  10. 10.
    He, H. (1997) Kostenoptimierung privater Telekommunikationsnetze mit digitaler Kanaldurchschaltung. Shaker, AachenGoogle Scholar
  11. 11.
    Born, J. (1978) Evolutionsstrategien zur numerischen Lösung von Adaptationsaufgaben. Dissertation, Humboldt-Universität, BerlinGoogle Scholar
  12. 12.
    Girard, A. (1990) Routing and Dimensioning in Circuit-Switched Networks. Addison-Wesley.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Bäck
    • 1
    • 2
  • Claus Hillermeier
    • 3
  • Jörg Ziegenhirt
    • 1
  1. 1.NuTech Solutions GmbHDortmundGermany
  2. 2.Leiden University Leiden Institute for Advanced Computer ScienceLeidenThe Netherland
  3. 3.SIEMENS AG Corporate TechnologyMunichGermany

Personalised recommendations