Evolutionary Computation for Evolutionary Theory

  • C. C. Maley
Part of the Natural Computing Series book series (NCS)


Evolutionary computation has developed primarily as an engineering tool for finding solutions to difficult problems. In the shadow of this success, a revolution has been building in evolutionary theory. Evolutionary models, often quite similar to genetic algorithms, are being used to extend our theoretical understanding of biology. Evolutionary models can represent details of the biology that makes analytical models mathematically intractable. Evolutionary models may thus be used as checks on the simplifications of analytical models, as well as formalisms for exploring the consequences of a particular representation of a biological system. In the best of cases, evolutionary models act as biological theories, accounting for previous experimental results and making predictions for future results. In this way, evolutionary models are serving to reunite theoretical biology with experimental biology.

“Mathematical and computational approaches to biological questions, a marginal activity a short time ago, are now recognized as providing some of the most powerful tools in learning about nature; such approaches guide empirical work and provide a framework for synthesis and analysis.”[1]


Genetic Algorithm Mutation Rate Fossil Record Evolutionary Computation Configuration Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levin, S. A., Grenfell, B., Hastings, A., Perelson, A. S. (1997) Mathematical and computational challenges in population biology and ecosystems science, Science, 275, 334–343zbMATHCrossRefGoogle Scholar
  2. 2.
    Darwin, C. R. (1859) On the Origin of Species. London: John MurrayGoogle Scholar
  3. 3.
    Dennett, D. C. (1995) Darwin’s Dangerous Idea. New York, NY: Simon and SchusterGoogle Scholar
  4. 4.
    Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan PressGoogle Scholar
  5. 5.
    Goldberg, D. E. (1989) Genetic Algorithms: In Search, Optimization and Machine Learning. Reading, MA: Addison-WesleyzbMATHGoogle Scholar
  6. 6.
    Fogel, D. B., Atmar, W. ( eds.) (1992) First Annual Conference on Evolutionary Programming, (La Jolla, California), Evolutionary Programming SocietyGoogle Scholar
  7. 7.
    Becker, J. D., Eisele, I., Mündemann, F. W. (eds.) (1989) Parallelism, Learning, Evolution: Proceedings of the Workshop on Evolutionary Models and Strategies/Proceedings of the Workshop on Parallel Processing: Logic, Organization, and Technology (WOPPLOT 89), 565 LNAI (Wildbad Kreuth, FRG), Springer-VerlagGoogle Scholar
  8. 8.
    Koza, J. R. (1992) Genetic Programming. Cambridge, MA: MIT PresszbMATHGoogle Scholar
  9. 9.
    Mitchell, T. M. (1997) Machine Learning. New York, NY: McGraw-HillzbMATHGoogle Scholar
  10. 10.
    Grefenstette, J. J. (ed.) (1985) Proceedings of the First International Conference on Genetic Algorithms and their Applications (ICGA ’85), (Hillsdale, N.J, Lawrence Erlbaum AssociatesGoogle Scholar
  11. 11.
    Grefenstette, J. J. (ed.) (1987) Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, (Hillsdale, NJ), Lawrence Erlbaum AssociatesGoogle Scholar
  12. 12.
    Schaffer, J. D. (ed.) (1989) Proceedings of the Third International Conference on Genetic Algorithms, George Mason University, San Mateo, Morgan KaufmannGoogle Scholar
  13. 13.
    Belew, R. K., Booker, L.B. (eds.) (1991) Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA’91), (San Mateo, CA), Morgan KaufmannGoogle Scholar
  14. 14.
    Forrest, S. (ed.) (1993) Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA’93), (San Mateo, CA), Morgan KaufmannGoogle Scholar
  15. 15.
    Eshelman, L. (ed.) (1995) Proceedings of the Sixth International Conference on Genetic Algorithms, (San Mateo, CA), Morgan KaufmannGoogle Scholar
  16. 16.
    Back, T. (ed.) (1997) Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA’97), (San Francisco, CA), Morgan KaufmannGoogle Scholar
  17. 17.
    Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., Smith, R. E. (eds.), GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, (Orlando, FL), Morgan Kaufmann ForthcomingGoogle Scholar
  18. 18.
    Mitchell, M., Forrest, S. (1994) Genetic algorithms and artificial life, Artificial Life, 1, 267–290CrossRefGoogle Scholar
  19. 19.
    Caswell, H., John, A. M. (1992) From the individual to the population in demographic models, in Individual-Based Models and Approaches in Ecology (D. DeAngelis and L. Gross, eds.), 36–61, NY: Chapman and HallGoogle Scholar
  20. 20.
    Hillis, W. D. (1992) Co-evolving parasites improve simulated evolution as an optimization procedure, in Artificial Life II (C. G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen, eds.), 313–324, Reading, MA: Addison-WesleyGoogle Scholar
  21. 21.
    Sumida, B. H., Hamilton, W.D., Both Wrightian and’ parasite’ peak shifts enhance genetic algorithm performance, in Computing with Biological Metaphors (R. Paton, ed.), (1994) 264–279, London: Chapman and HallGoogle Scholar
  22. 22.
    Maley, C. C. (1998) Models in evolutionary ecology and the validation problem, in Artificial Life VI (C. Adami, R. K. Belew, H. Kitano, and C. E. Taylor, eds.), 423–427, Cambridge, MA: MIT PressGoogle Scholar
  23. 23.
    Heylighen, F. (1997) Occam’s razor, in Principia Cybernetica Web (C. J. F. Heylighen and V. Turchin, eds.), Brussels: Principia Cybernetica, URL: Google Scholar
  24. 24.
    Kimura, M., Ohta, T. (1969) The average number of generations until fixation of a mutant gene in a finite population, Genetics, 61, 763–771Google Scholar
  25. 25.
    Kimura, M., Ohta, T. (1969) The average number of generations until extinctions of an individual mutant gene in a finite population, Genetics, 63, 701–709Google Scholar
  26. 26.
    Kimura, M. (1983) The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University PressCrossRefGoogle Scholar
  27. 27.
    Maynard Smith, J., Haigh, J.(1974) The hitch-hiking effect of a favorable gene, Genetics Research, 231, 1114–1116Google Scholar
  28. 28.
    Thomson, G. (1977) The effect of a selected locus on a linked neutral locus, Genetics, 85, 752–788MathSciNetGoogle Scholar
  29. 29.
    Kaplan, N. L., Hudson, R. R., Langley, C. H. (1989) The hitchhiking effect revisited, Genetics, 123, 887–899Google Scholar
  30. 30.
    Ohta, T. (1971) Associative overdominance caused by linked detrimental mutations, Genetics Research, 18, 277–286CrossRefGoogle Scholar
  31. 31.
    Sved, J.A. (1972) Heterosis at the level of the chromosome and at the level of the gene, Theoretical Population Biology, 3, 491–506CrossRefGoogle Scholar
  32. 32.
    Charlesworth, B., Morgan, M. T., Charlesworth, D. (1993) The effect of deleterious mutations on neutral molecular variation, Genetics, 134, 1289–1303Google Scholar
  33. 33.
    Hudson, R. R., Kaplan, N. L. (1995) Deleterious background with recombination, Genetics, 141, 1605–1617Google Scholar
  34. 34.
    Braverman, J. M., Hudson, R. R., Kaplan, N. L., Langley, C. H., Stephan, W. (1995) The hitchhiking effect on the site frequency spectrum of DNA polymorphisms, Genetics, 140, 783–796Google Scholar
  35. 35.
    Charlesworth, D., Charlesworth, B., Morgan, M. T. (1995) The pattern of neutral molecular variation under the background selection model, Genetics, 141, 1619–1632Google Scholar
  36. 36.
    Collins, R., Jefferson, D. (1992) The evolution of sexual selection and female choice, in Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life (F. J. Varela and P. Bourgine, eds.), 327–336, (Cambridge, MA), MIT PressGoogle Scholar
  37. 37.
    Kirkpatrick, M. Sexual selection and the evolution of female choice., Evolution, 36, 1–12Google Scholar
  38. 38.
    Boerlijst, M., Hogeweg, P. (1991) Spiral wave structure in prebiotic evolution: Hypercycles stable against parasites, Physica, 48D, 17–28Google Scholar
  39. 39.
    May, R.M., (1991) Hypercycles spring to life, Nature, 353, 607–608CrossRefGoogle Scholar
  40. 40.
    Kauffman, S. A. (1993) Origins of Order. Oxford: Oxford University PressGoogle Scholar
  41. 41.
    Bak, P., Sneppen, K. (1993) Punctuated equilibrium and criticality in a simple model of evolution, Physical Review Letters, 71, 4083–4086CrossRefGoogle Scholar
  42. 42.
    Sneppen, K., Bak, P. (1993) Mean field theory for a simple model of evolution, Physical Review Letters, 71, 4087–4091CrossRefGoogle Scholar
  43. 43.
    Feldman, M. W., Liberman, U. (1986) An evolutionary reduction principle for genetic modifiers, Proceedings of the National Academy of Science, USA, 83, 4824–4827MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Liberman, U., Feldman, M.W. (1986) Modifiers of mutation rate: A general reduction principle, Theoretical Population Biology, 30, 125–142MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Altenberg, L., Feldman, M.W. (1987) Selection, generalized transmission and the evolution of modifier genes. I the reduction principle, Genetics, 117, 559–572Google Scholar
  46. 46.
    Gillespie, J. H. (1981) Mutation modification in a random environment, Evolution, 35, 468–476CrossRefGoogle Scholar
  47. 47.
    Gillespie, J. H. (1981) Evolution of a mutation rate at a heterotic locus, Proceedings of the National Academy of Science, USA, 78, 2452–2454MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Ishii, K., Matsuda, H., Iwasa, Y., Sasaki, A. (1989) Evolutionary stable mutation rate in a periodically changing environment, Genetics, 121, 163–174Google Scholar
  49. 49.
    Axelrod, R., Hamilton, W.D. (1981) The evolution of cooperation, Science, 211, 1390–1396MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Maley, C. (1997) Mutation rates as adaptations, Journal of Theoretical Biology, 186, 339–348CrossRefGoogle Scholar
  51. 51.
    Hartvigsen, G., Starmer, W.T. (1995) Plant-herbivore coevolution in a spatially and genetically explicit model, Artificial Life, 2, 239–259CrossRefGoogle Scholar
  52. 52.
    Thompson, J. N., Burdon, J. J. (1992) Gene-for-gene coevolution between plants and parasites, Nature, 360, 121–125CrossRefGoogle Scholar
  53. 53.
    Raup, D. M., Gould, S. J., Schopf, T. J. M., Simberloff, D. S. (1981) Stochastic models of phylogeny and the evolution of diversity, Journal of Geology, 81, 525–542CrossRefGoogle Scholar
  54. 54.
    Gould, S. J., Eldredge, N. (1977) Punctuated equilibria: The tempo and mode of evolution reconsidered, Paleobiology, 3, 115–151Google Scholar
  55. 55.
    Sepkoski, J.J. (Jr.), Kendrick, D.C. (1993) Numerical experiments with model monophyletic and paraphyletic taxa, Paleobiology, 19, 168–184Google Scholar
  56. 56.
    Robeck, H., Maley, C. C., Donoghue, M. (2000) Taxonomy and temporal diversity patterns, In press.Google Scholar
  57. 57.
    Raup, D. M. (1972) Taxonomie diversity during the Phanerozoic, Science, 177, 1065–1071CrossRefGoogle Scholar
  58. 58.
    Valentine, J.W. (1969) Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time, Paleontology,12, 684–709Google Scholar
  59. 59.
    Sepkoski, J. J. (Jr.), Bambach, R. K., Raup, D. M., Valentine, J. W. (1981) Phanerozoic marine diversity and the fossil record, Nature, London, 293, 435–437.CrossRefGoogle Scholar
  60. 60.
    Lenski, R. E., Travisano, M. (1994) Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations, Proceedings of the National Academy of Science, USA, 91, 6808–6814CrossRefGoogle Scholar
  61. 61.
    Rice, W. R., Hostert, E. E. (1993) Laboratory experiments on speciation: What have we learned in 40 years Evolution, 47, 1637–1653CrossRefGoogle Scholar
  62. 62.
    Maley, C. C. (1998) The Evolution of Biodiversity: A Simulation Approach. PhD thesis, Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  63. 63.
    Todd, P. M., Miller, G.F. (1991) On the sympatric origin of species: Mercurial mating in the quicksilver model, in Proceedings of the Fourth International Conference on Genetic Algorithms (R. K. Belew and L.B. Booker, eds.), (San Mateo, CA), 547–554, Morgan KaufmannGoogle Scholar
  64. 64.
    Mayr, E. (1942) Systematics and the Origin of Species. New York: Columbia University PressGoogle Scholar
  65. 65.
    Mayr, E. (1963) Populations, Species, and Evolution. Cambridge, MA: Harvard University PressGoogle Scholar
  66. 66.
    Smith, D. J., Forrest, S., Ackley, D. H., Perelson, A. S. (1999) Variable efficacy of repeated annual influenza vaccination, Proceedings of the National Academy of Science, USA, 96, 14001–14006CrossRefGoogle Scholar
  67. 67.
    Smith, D. J., Forrest, S., Perelson, A. S. (1998) Immunological memory is associative, in Artificial Immune Systems and their Applications (D. Dasgupta, ed.), 105–112, Berlin, Springer-VerlagGoogle Scholar
  68. 68.
    Bedau, M. A., Snyder, E., Packard, N. H. (1998) A classification of longterm evolutionary dynamics, in Artificial Life VI (C. Adami, R. K. Belew, H. Kitano, and C. E. Taylor, eds.), 228–237, Cambridge, MA: MIT PressGoogle Scholar
  69. 69.
    Maley, C. C. (1999) Four steps toward open-ended evolution, in Proceedings of the Genetic and Evolutionary Computation Conference (W. Banzhaf, J. Daida, A. E. Eiben, V. H. M. H. Garzon, M. Jakiela, and R. E. Smith, eds.), San Francisco, CA: Morgan Kaufmann, 1336–1343Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • C. C. Maley
    • 1
  1. 1.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations